a2 United States Patent

US009177007B2

(10) Patent No.: US 9,177,007 B2

Winters et al. 45) Date of Patent: Nov. 3, 2015
(54) COMPUTER IMPLEMENTED METHODS UsSpC ... 707/803, 609, 769, 737, 802, 797, 798,
AND APPARATUS TO INTERACT WITH 705/7.11, 14.49
RECORDS USING A PUBLISHER OF AN See application file for complete search history.
INFORMATION FEED OF AN ONLINE .
SOCIAL NETWORK (56) References Cited
(71) Applicant: salesforce.com, inc., San Francisco, CA U:S. PATENT DOCUMENTS
(US) 5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
(72) Inventors: Jason Winters, San Francisco, CA (US); 5,649,104 A 7/1997 Carleton et al.
David Haynes, San Francisco, CA ([JS), 5,715,450 A 2/1998 Ambrose et al.
Craig Villamor, San Mateo, CA (US); (Continued)
Luke Ball, Berkeley, CA (US); Ian OTHER PUBLICATIONS
Swinson, Oakland, CA (US)
“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
(73) Assignee: salesforce.com, inc., San Francisco, CA Feb. 21, 2012 from Internet at http://www.googleplusers.com/
(as) google-ripples.html], 3 pages.
(*) Notice: Subject to any disclaimer, the term of this Prlr.nary Examn?er — Mariela Reyes
patent is extended or adjusted under 35 Assistant Examiner — Thong Vu o
U.S.C. 154(b) by 173 days. (74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
& Sampson LLP
(22) Filed: Mar. 14, 2013 Disclosed are methods, apparatus, systems, and computer-
readable storage media for interacting with records using a
(65) Prior Publication Data publisher configured to publish information to a feed of a
social network. In some implementations, a computing
US 2014/0101149 Al Apr. 10,2014 device receives a request to interact with a child record related
to a parent record stored in a database system. The request is
generated via the publisher displayed in a user interface on a
Related U.S. Application Data display device. The user interface is also configured to display
(60) Provisional application No. 61/646,465, filed on May the feed in association with an entity of the social network.
14, 2012. Child record information indicating a type of the child record
and field data to populate one or more fields of the child
(51) Int.CL record can be received. The field data is differentiated from
GO6F 17/30 (2006.01) message content generated via the publisher to include in a
(52) US.CL feed item for presentation in the feed when displayed to one or
CPC v GOGF 17/30345 (2013.01) ~ more users following the parent record. The requested inter-
(58) Field of Classification Search action With the ghild record can be performed using the child
CPC oo GOGF 17/30286; GOGF 17/30067; ~ record information.

GOG6F 3/0641

28 Claims, 29 Drawing Sheets

r17 /-28

Application
Platform L

User
System .
12

f1 8 | Processor
System Process Space

Network System 16
Interface

------- System

Environment
10

User

12

US 9,177,007 B2

Page 2
(56) References Cited 7,289,976 B2 10/2007 Kihneman et al.
7,340,411 B2 3/2008 Cook
U.S. PATENT DOCUMENTS 7,356,482 B2 4/2008 Frankland et al.
7,373,599 B2 5/2008 McElfresh et al.
5,761,419 A 6/1998 Schwartz et al. 7,401,094 Bl 7/2008 Kesler
5,819,038 A 10/1998 Carleton et al. 7,406,501 B2 7/2008 Szeto et al.
5,821,937 A 10/1998 Tonelli et al. 7412455 B2 82008 Dillon
5,831,610 A 11/1998 Tonelli et al. 7,454,509 B2 11/2008 Boulter et al.
5,873,096 A 2/1999 Limetal. 7,508,780 B2 3/2009 Chan
5,918,159 A 6/1999 Fomukong et al. 7,599,935 B2 10/2009 La Rotonda et al.
5,963,953 A 10/1999 Cram et al. 7,603,331 B2 10/2009 Tuzhilin et al.
5,983,227 A 11/1999 Nazem et al. 7,603,483 B2 10/2009 Psounis et al.
6,002,083 A 7/2000 Brodersen et al. 7,620,655 B2 11/2009 Larsson et al.
6,094,649 A * 7/2000 Bowenetal. 707/711 7,644,122 B2 1/2010 Weyer etal.
6,161,149 A 12/2000 Achacoso et al. 7,668,861 B2 2/2010 Steven
6,169,534 Bl 1/2001 Raffel et al. 7,698,160 B2 4/2010 Beaven et al.
6,178,425 Bl 1/2001 Brodersen et al. 7,730,478 B2 6/2010 Weissman
6,189,011 Bl 2/2001 Limetal. 7,747,648 Bl 6/2010 Kraftetal.
6,216,133 Bl 4/2001 Masthoff 7,779,039 B2 8/2010 Weissman et al.
6,216,135 Bl 4/2001 Brodersen et al. 7,779,475 B2 82010 Jakobson et al.
6,233,617 Bl 5/2001 Rothwein et al. 7,827,208 B2 11/2010 Bosworth et al.
6,236,978 Bl 5/2001 Tuzhilin 7,853,881 Bl 12/2010 Assal et al.
6,266,669 Bl 7/2001 Brodersen et al. 7.945,653 B2 5/2011 Zukerberg etal.
6,288,717 Bl 9/2001 Dunkle 8,005,896 B2 82011 Cheah
6,295,530 Bl 9/2001 Ritchie et al. 8,014,943 B2 9/2011 Jakobson
6,324,568 Bl 11/2001 Diec et al. 8,015,495 B2 9/2011 Achacoso et al.
6,324,693 Bl 11/2001 Brodersen et al. 8,032,297 B2 10/2011 Jakobson
6,336,137 Bl 1/2002 Lee et al. 8,073,850 Bl 12/2011 Hubbard et al.
D454,139 S 3/2002 Feldcamp et al. 8,082,301 B2 12/2011 Ahlgren et al.
6,367,077 Bl 4/2002 Brodersen et al. 8,095.413 Bl 1/2012 Beaven
6,393,605 Bl 5/2002 Loomans 8,095,531 B2 1/2012 Weissman et al.
6,405,220 Bl 6/2002 Brodersen et al. 8,095,594 B2 1/2012 Beaven et al.
6,411,949 Bl 6/2002 Schaffer 8,103,611 B2 1/2012 Tuzhilin et al.
6,434,550 Bl 8/2002 Warner et al. 8,150,913 B2 42012 Cheah
6,446,089 Bl 9/2002 Brodersen et al. 8,209,308 B2 6/2012 Rueben et al.
6,535,909 Bl 3/2003 Rust 8,209,333 B2 6/2012 Hubbard et al.
6,549,908 Bl 4/2003 Loomans 8,275,836 B2 9/2012 Beaven et al.
6,553,563 B2 4/2003 Ambrose et al. 8.457,545 B2 6/2013 Chan
6,560,461 Bl 5/2003 Fomukong et al. 8,478,616 B2* 7/2013 DeKlerketal. 705/7.11
6,574,635 B2 6/2003 Stauber et al. 8,478,722 B2* 7/2013 Leeetal. ... 707/622
6:577:726 Bl 6/2003 Huang et al. 8,484,111 B2 7/2013 Frankland et al.
6,601,087 Bl 7/2003 Zhu et al. 8,490,025 B2 7/2013 Jakobson et al.
6,604,117 B2 8/2003 Lim et al. 8,504,945 B2 82013 Jakobson et al.
6.604.128 B2 8/2003 Diec et al. 8,510,045 B2 82013 Rueben et al.
6:609:150 B2 8/2003 Lee et al. 8,510,664 B2 8/2013 Rueben et al.
6,621,834 Bl 9/2003 Scherpbier et al. 8,566,301 B2 10/2013 Rueben et al.
6,654,032 Bl 11/2003 Zhu et al. 8,646,103 B2 2/2014 Jakobson et al.
6,665,648 B2 12/2003 Brodersen et al. 8,898,582 B2 11/2014 Law etal.
6,665,655 Bl 12/2003 Warner et al. 2001/0044791 Al 112001 Richter et al.
6.684.438 B2 2/2004 Brodersen et al. 2001/0047279 Al* 11/2001 Gargone 705/1
6711565 Bl 3/2004 Subramaniam et al. 2002/0072951 Al 6/2002 Leeetal.
6,724:399 Bl 4/2004 Katchour et al. 2002/0082892 Al 6/2002 Raffel et al.
6,728,702 Bl 4/2004 Subramaniam et al. 2002/0129352 Al 9/2002 Brodersen et al.
6.728.960 Bl 4/2004 T.oomans et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2002/0143997 A1 10/2002 Huang et al.
6,732,100 Bl 5/2004 Brodersen et al. 2002/0162090 Al 10/2002 Parnell et al.
6,732,111 B2 5/2004 Brodersen et al. 2002/0165742 Al 11/2002 Robbins
6,754,681 B2 6/2004 Brodersen et al. 2003/0004971 Al 1/2003 Gong
6.763.351 Bl 7/2004 Subramaniam et al. 2003/0018705 Al 1/2003 Chen et al.
6.763.501 Bl 7/2004 Zhu et al. 2003/0018830 Al 1/2003 Chen et al.
6768.004 B2 7/2004 Kim 2003/0066031 Al 4/2003 Laane et al.
6,772,229 Bl 8/2004 Achacoso et al. 2003/0066032 Al 4/2003 Ramachandran et al.
6.782.383 B2 8/2004 Subramaniam et al. 2003/0069936 Al 4/2003 Warner et al.
6.804330 Bl 10/2004 Jones of al. 2003/0070000 Al 4/2003 Coker et al.
6.826.565 B2 11/2004 Ritchic cf al. 2003/0070004 Al 4/2003 Mukundan et al.
6,826,582 Bl 11/2004 Chatterjee et al. 2003/0070005 Al 4/2003 Mukundan et al.
6.826.745 B2 11/2004 Coker 2003/0074418 Al 4/2003 Coker et al.
6.829.655 Bl 12/2004 Huang et al. 2003/0120675 Al 6/2003 Stauber et al.
6,842,748 Bl 1/2005 Warner et al. 2003/0151633 Al 8/2003 George et al.
6,850,895 B2 2/2005 Brodersen et al. 2003/0159136 Al 82003 Huang etal.
6,850,949 B2 2/2005 Warner et al. 2003/0187921 Al 10/2003 Diec et al.
6,907,566 Bl 6/2005 McElfresh et al. 2003/0189600 Al 10/2003 Gune et al.
7,062,502 Bl 6/2006 Kesler 2003/0204427 Al 10/2003 Gune et al.
7,069,231 Bl 6/2006 Cinarkaya et al. 2003/0206192 Al 11/2003 Chen et al.
7,069,497 Bl 6/2006 Desai 2003/0225730 Al 12/2003 Warner et al.
7,100,111 B2 8/2006 McElfresh et al. 2004/0001092 Al 1/2004 Rothwein et al.
7,143,091 B2* 11/2006 Charnocketal.coccoeeen 1 2004/0010489 Al 1/2004 Rio et al.
7,181,758 Bl 2/2007 Chan 2004/0015981 Al 1/2004 Coker et al.
7,269,590 B2 9/2007 Hull et al. 2004/0027388 Al 2/2004 Berg et al.

US 9,177,007 B2

Page 3
(56) References Cited 2011/0247051 Al 10/2011 Bulumulla et al.
2012/0010995 Al* 1/2012 Skirpaetal. 705/14.49
U.S. PATENT DOCUMENTS 2012/0042218 Al 2/2012 Cinarkaya et al.
2012/0101985 Al* 4/2012 Kempetal.ceeeene 707/609
2004/0128001 Al 7/2004 Levin et al. 2012/0143917 Al* 6/2012 Prabakeretal. ... 707/784
2004/0186860 Al 9/2004 Lee et al. 2012/0233137 Al 9/2012 Jakobson et al.
2004/0193510 Al 0/2004 Catahan et al. 2012/0290407 Al 11/2012 Hubbard et al.
2004/0199489 Al 10/2004 Barnes-Leon et al. 2013/0054517 Al* 2/2013 Beechuketal. ... 707/609
2004/0199536 A1 10/2004 Barnes Leon et al. 2013/0212497 Al 82013 Zelenko et al.
2004/0199543 Al 10/2004 Braud et al. 2013/0218948 Al 8/2013 Jakobson
2004/0249854 Al 12/2004 Barnes-Leon et al. 2013/0218949 Al 82013 Jakobson
2004/0260534 Al 12/2004 Paketal. 2013/0218966 Al 82013 Jakobson
2004/0260659 Al 12/2004 Chan et al. 2013/0247216 Al 9/2013 Cinarkaya et al.
2004/0268299 Al 12/2004 Leietal. 2013/0304763 Al* 11/2013 Espositoetal. ... 707/783
2005/0050555 Al 3/2005 Exley et al. 2014/0282240 Al* 9/2014 Flynn, IIT 715/810
2005/0091098 Al 4/2005 Brodersen et al. 2014/0289033 Al* 9/2014 Ortigoza 705/14.29
2008/0249972 Al 10/2008 Dillon 2014/0359537 Al 12/2014 Jakobson et al.
2009/0063415 Al 3/2009 Chatfield et al. 2015/0006289 Al 1/2015 Jakobson et al.
2009/0100342 Al 4/2009 Jakobson 2015/0007050 Al 1/2015 Jakobson et al.
2009/0177744 Al 7/2009 Marlow et al. 2015/0095162 Al 4/2015 Jakobson et al.
2011/0173238 Al* 7/2011 Griggs 707/805 2015/0142596 Al 5/2015 Jakobson et al.
2011/0208822 Al* 82011 Rathod 709/206
2011/0218958 Al 9/2011 Warshavsky et al. * cited by examiner

U.S. Patent

Nov. 3, 2015 Sheet 1 of 29 US 9,177,007 B2
22 24
/‘26
Tenant
Program
Data
Storage Code
(‘1 7 e 28
f18 Processor
System Process Space
Application
Platform 20 \
Network System 16

Interface

Environment
10

User User
System | e System
12 12

FIGURE 1A

U.S. Patent

25

Nov. 3, 2015

Sheet 2 of 29

US 9,177,007 B2

22 -

— /
——

\
!“/

123

Tenant Space

112

Tenant Data

114

Application MetaData [|~ 116

Tenant DB

Application
Setup
Mechanism 38

Save

Tenant Management

Process
110

System
Process
102

Routines 36

Tenant 1
Process

PL/SOQL

Tenant 2
Process

Tenant N
Process

== N Nog — 28

Appl.
Server

Environment
10

12~
Processor
System 12A
Input
System 12C

Memory
System 12B

Output
System 12D

L—100n

Appl.
Server

FIGURE 1B

16

U.S. Patent Nov. 3, 2015 Sheet 3 of 29 US 9,177,007 B2

220
208 d Pod | 240
@ 216 /' Core 228 5
204 rEgge g, - Switch 1 SN 22 g
b' rRover1 (] Switch 3
S -
Storage

(S) Adive N ¥ Lot N 202
) | Balancer Active DB Switch
212 Egge ™ 224 Frewal ~ (10f2)
ge Core s irewal
Router 2 Switch 4 236
244 R~ 200
FIGURE 2A

Database
Instance \

File Force
Servers
292\8 / é ‘ﬁ\

Indexers
FS
%

Fileforce

Balancer FIGURE 2B Stoage

U.S. Patent Nov. 3, 2015 Sheet 4 of 29 US 9,177,007 B2

310 —— Database system receives a
request to update a first record

y

320 —— Database system writes new
data to first record

A 4

330
) Generate feed update

A 4

340
\ Add feed update to feed of first
record

y

350
Y Identify followers of first record

\ 4
Add the feed update to a news feed

360 —

of each follower

\ 4

370 —_| Follower accesses his/her news feed
and sees the update

FIGURE 3

US 9,177,007 B2

Sheet 5 of 29

Nov. 3, 2015

U.S. Patent

55 ¥ 34N9Id
(18moj|oy)
v Jasn puooag 9
1003 1osn
u,_w "y puZ 4O PI3Y
10, 150nboy 10} 1s8nbay 00v
9% FTF Sep \
wayshs 9seqeleq alyo.d
aseqgeleq 9|joid Jamoj|jo4
A
g
=5 5 ajepdn
asegejeq oo} MON
1008y Sjepdn
P v pa9) MaN
*T4% LY
ploosy Z (s)iossaooud | [S10}7
BlEp MON - mW_] 1asn 18414
7 X plooay
0} a1epd
0zy 1 91epdn

U.S. Patent Nov. 3, 2015 Sheet 6 of 29 US 9,177,007 B2

500
510 Database system identifies an '//_
Y action of a first user that triggers
an event

A 4 NO
Does the event qualify for a

feed update?

520 ———

A 4

Stop

Yes

Y

Generate feed update about the
action

530 —

Y

540 ——| Add feed update to feed of first
user

Y

550 ~— Identify followers of first user

Y

Add the feed update to a news
feed of each follower

560 —

A 4

570 —| Follower accesses the news
feed and sees the feed update

FIGURE 5

U.S. Patent Nov. 3, 2015 Sheet 7 of 29

610 — Database system receives a
message associated with a user

A 4

620 — Add message to a feed (e.g. as
a profile feed) of the user

A 4

630
"™\] Database system identifies
followers of user

A 4

640 —_|Add the message to a news feed
of each follower

A 4

650 ™~ Follower accesses a news feed
and sees the message

y

660] Database system receives a
comment about the message

A 4

670 —] Add comment to the news feed
of each follower

FIGURE 6

US 9,177,007 B2

600
vy~

US 9,177,007 B2

Sheet 8 of 29

Nov. 3, 2015

U.S. Patent

4 34N9id

-doyysep Aw Buies inoge Bupjuiy
‘s1ayndwiod AueLu 00) aAey |

swepe wes

iAEPO) Yooqiau mau A Joo
gZiuniew uue ER

"}ooqjau Mau sy} 9as 0} Hem
juen -Buudg siy) sjeap awosame
Uuam ano Buiwoo si j1ag preay |

SWepe” wes

JUBLLILLOY € BJLAA _

Wd et ‘Aepioisap
'5U0 A|UO BU} S| "DNAS JapuN }5UBAUI BU} UO SI 3]l BYL Janeg g

Nd 8117 Aepialsa
‘BuasIe| Ul BOISSSM O} 3|} 'PUNCIE ¥SE ||| a10op Alep

M3} B Pa)IPaBl Usad SBY }| 4)UsjUuod Ul ¥08yd nok pIp ‘ains joud uoxes sawer

INd 8¢ Aepiaysa |Ad 'souls sawi %

‘dnoub e se
maol|o} 03 sBuiyy Jo ejdoad puly

losl] v ees (@) Bummoliod

L)

&y
&1l

Wd 81t ‘Aeplaysa A 817 8jeald
J SBY ||Ig YUy} | uosuyor g3 ﬁ Weal AN G u
|\ Juswwory wdj g w ﬁ segunpoddo %u
0cL 480, DNAS Woy 105p 8joukay ayy w>ﬂm:o>cm $90(7 SlMeH J9yled - H p— @
0c¢L
"S18qUISLU WES) 80IA0U BJOLU BL)) sz
10} 8|qepeal Alaa s)1 ‘Uidep Jo j1q B 8yinb ol ob jou saop)1 ybnou e oA
'$88UISNq INo Jo suauodwod BuIAlIepun sy} SaUIINO JUSWNIOP SILL B
(Ldd) peojumoq meIA syooqieN — sybisul sannedwod
SETERS

TUBWoS wdl | :¢ ssoodieN — Siubisu| Annadwos Juswnoop ay) paisod sey Jeneg |ig @

\ oL 600Z 'vZ AInr AepoL

— &uo Bupjiom noA ale um:>>~

aid [J Hurg uoeny

losil v e9g (7) siaquiapy

@ sbumes saqusw
e sBumas dnosb

N/

‘Ri@Aoaye aloll ZAX Isulebe ajadwiod 0} Sh MO||B |[IM 2L} UORBWIOMI 8JBYS O} 80B|d

dnoin aannadwo) ZAX

spieoquseq spoday sanunjoddo sjorjuce) m«::ouo<E ajyoid Ay dwoH
7

pnolD safes]

ofo] dieH dnjeg suieH Jexied OOM@\WO#&@

US 9,177,007 B2

Sheet 9 of 29

Nov. 3, 2015

U.S. Patent

8 F4NOId

[JusWoD & alum | 7

INd 8Z:F ‘Aeplsisap
“ABsjelis sshosip O} juem NoA Ji Bull B BLU 9AIS) "Jea4 1SB| JUNOJJ. SIL) L0 PaXJoMm | 1axied ASH Janeq |G

WeWwos wdl i€ 480, DNAS WOLL109p DJ0UASY BU} aaeY SucAue S80(Q SIIEH Jasied

JUSWILHOD wid | | ¢ ‘AeplaissA W
JUNOa2E ZAX# 8y} uo ay| Aseyjeq dojde| punose uoniedwos ybnoy swos Bumab sl yseN aug [N al ﬁ

uig aphosy Du
1EpUSIED E

600Z ‘sz AInr Aepisysop

JuBLIWOD € UM |

Wd 8£:21 ‘Aeplayse A ebus|ieyo e aq o} Buiob sauo siy) ‘'saA ddey sxer F- 19BPIM 000'Z | — BLUDY @

@ siafipian
- 000§ - Wod anlojsales @
woo'a0l0)sales bU

awoy AN

yowag o [y

WY 811} ‘Aepiese) Bunsaisiul WWH meT esug [prie

Wawwos we| ;2 ‘AeploisaA ez L-Aunpoddo# uo janposd g pnojs 801AIaS Jno alojdxa 0} sjuem ZAX Jeneq |I1g

JUSWIWOD We | |:/ ‘AepJsise A
ez L-Aiunuoddo# uo [eaocidde Joj papiugns uaad isnl sey Junodsip e s18bBpIp 0001 — "@dU] “ZAX .

‘vz Ain Aepo
ro_\w 600Z ‘¥ AInr Aepol

E\I\/J adld yu uoeny
I}

_ & Uo Buisiom noA ase ﬁc>>~

[3IE3g S0UBAPY

umo | swey oy iy 1

|
MezlL-Aunpoddo & s

(1) 1omeYD @‘..

spieoquseq suodey JEERINIBICGEIOM sjoejuon sjunoddy sdnodn sjyodd AN sWoH

B pnoig s8les] nofo] disH dnieg suleH Jedled OOHO.\WO—ﬁm

U.S. Patent Nov. 3, 2015 Sheet 10 of 29 US 9,177,007 B2

Event Object Created by Event Comment

Time/
ID 911 ID 912 ID 913 ID 931 932 Date 933
« « | 10-21-2010
E1 0615 us E37 539 PM
E2 0489 U101 E37 ‘o 9-17-2010
) Event History Table 910 * Comment Table 930
Event Old value New Event Post Text Time/
ID 921 922 value 923 ID 951 952 Date 953
10-11-2010
E37 300 400 E69 4:12 PM
E37 4.23 4.10 E90 - 8-12-2010
Field Change Table .
920 Post Table 950
User ID Object
941 ID 942 User Event
us19 0615 ID 961 ID 962
ug19 0489 us19 E37
U719 0615 us19 E90
User Subscription U719 E37
Table 940

News Feed Table
9260

FIGURE 9A

U.S. Patent Nov. 3, 2015 Sheet 11 of 29 US 9,177,007 B2

901 Receive one or more properties of
Y an object stored in the database
system

A 4
902 Receive one or more criteria about

" which users are to automatically
follow the object

Y
903 Determine whether the one or
\ more properties of the object
satisfy the one or more criteria for
a first user

A 4

904 ~ If the criteria are satisfied, the
object is associated with the first
user

FIGURE 9B

U.S. Patent Nov. 3, 2015 Sheet 12 of 29 US 9,177,007 B2

'/—-1000

1010 — Receive data indticative of an
even

y
1020 Determine whether the event is
) being tracked for inclusion into
feed tables

A 4

1030
\ Write event to an event history
table

1050
1040 4 v
\ Update field Update post /
change table table

Y
A 4

1060 — Receive a comment for an event
and add to a comment table

FIGURE 10

U.S. Patent Nov. 3, 2015 Sheet 13 of 29 US 9,177,007 B2

1100
v~

1110 —| Receive a query for an events
history table

Y

1120 ™ Check to determine if the user
can view the record feed

|

1130
\ Check field level security table to
determine whether the user can
see particular fields

1140 A 4
\ Display feed items to which the
user has access

FIGURE 11

U.S. Patent Nov. 3, 2015 Sheet 14 of 29 US 9,177,007 B2

1210 Receive a query from a second
Y user for an events history table

o see a first user’s profile feed

y
Perform security check whether
1220 — second user can see first user's
profile feed

\ 4
Perform a security
1230 — check on specific feed
items

\ 4
Retrieve a predetermined
1231 — number of matching entries from
the event history table

\ 4
1232 Organize the record identifiers by type and

" check whether the second can see the
record types

A 4

1233 ~ If can see type, then proceed to check
access for specific records

A 4

1234 — Use field sharing rules to determine if
certain fields are not viewable

A 4

1235 — Repeat steps 1231-1234 until a
stopping criteria is reached

FIGURE 12

U.S. Patent Nov. 3, 2015 Sheet 15 of 29

1310 —

Receive data indicative of an
event

1320 ——| Determine objects

y

associated with the event

A 4

Determine users following the
event

y

1340 —

Write followers of the event along
with an event identifier to a news
feed table

1350 ——_| Receive a request for a

A 4

news feed from a user

A 4

1360 —\

Access news feed table and other
tables to generate feed items for
display

FIGURE 13

US 9,177,007 B2

1300
v~

U.S. Patent Nov. 3, 2015 Sheet 16 of 29 US 9,177,007 B2

1400
y~

1410 Receive one or more criteria
) specifying which feed items are to
be displayed to a first user

Y

1420 — Identify feed items of one or more
selected objects that match the criteria

A 4

Display the feed items that
1430 ~N match the criteria to the first
user in the custom feed

FIGURE 14

U.S. Patent Nov. 3, 2015 Sheet 17 of 29 US 9,177,007 B2

1

—

A Method To Interact With Records Using A Publisher To Publish
Information To An Information Feed Of An Online Social Network

—

500

1502

Receive, at a computing device, a request to interact with a child
record related to a parent record stored in a database system

v -

15

Receive child record information indicating a type of child record
and field data to populate one or more fields of the child record in
the database system

v -

15

Perform, using the child record information, the requested
interaction with the child record

FIGURE 15

U.S. Patent Nov. 3, 2015 Sheet 18 of 29 US 9,177,007 B2

f_1600

A Method To Interact With Records Using A Publisher To Publish
Information To An Information Feed Of An Online Social Network

f—1602

Receive, at a computing device, a request to interact with a child
record related to a parent record stored in a database system

Is the entity a collaborator of the
parent record?

YES 1
v — 606

Send publisher data, based on the request to interact with the
child record, to a display device at which the publisher is
displayed

A el

Receive child record information indicating a type of child record
and field data to populate one or more fields of the child record in
the database system

il f_1610

Perform, using the child record information, the requested
interaction with the child record

l F—1612

Send feed data to the display devices of the users following
the entity

A 4

——(Done)

FIGURE 16

U.S. Patent Nov. 3, 2015 Sheet 19 of 29 US 9,177,007 B2

1700
—
Method For Presenting A Record In An Information Feed Of An Online
Social Network
1702
—

Receive, at a computing device, a request to present an information feed
associated with a parent record

l (1704

Identify one or more child records related to the parent record |

v — 1706
Select an unprocessed child record of the identified one or more child P
records N
l — 1708
—< Has information related to the unprocessed child record been updated? >
| YES
YES

1710
v (

Select, in accordance with one or more factors, information related to the
unprocessed child record for inclusion in a feed item

1712
A 4 {
< Do any unprocessed child records of the identified one or more child >

records remain?

NO NO F_WM
Generate feed data that includes the selected information related to the
identified one or more child records

1716
4 F_

Store the feed data in one or more storage mediums to generate feed items
for presentation in the information feed

A 4

_,(Done)

FIGURE 17

US 9,177,007 B2

Sheet 20 of 29

Nov. 3, 2015

U.S. Patent

8L 3dNvld

clgl g

AN

“uolingLsp INo YiMm
Q_Wr_ 1A JBL3 YJomisu mC_NNEN ue sey oy iDdy wol} sjoD A UIm [|2D ymm_m e pey isnr

|B9P MaU B paleys UBW||OS auLIayleD

A sanbBea|joo Aw | ypm

100G < slead »
X 10)30dwod b
JWOVE b

payleunjoog %

S3YDIeag Panesg

mwNw_‘L

Irews _ _ Z28T auoud _
_ b ozar Auedwon _ _ grar aniL _
_ 2533 sweN joejuoQ _

8T SjUBLILLIOD

8081 ¥081
A QJoW 7 % _M_ %\ y $
0L8L 9081
a auop sleagg | sondzL | SAseLg

sloy

wea] 7 yoaloid

dnoug Jojjedwo)

ealy Aeg

wea] ovdv E

wea] v yoafoid M_m

r@\hﬂ,ﬂ-/@k W\,

‘olyl0ed Blsy 0) s|eoB sojes yoedwi-ybly Buliealsq

wes] Jvdv

an @

VSN e20x-X

J

4
a 8I0[sjoejuon syse] E m_OXIx

US 9,177,007 B2

Sheet 21 of 29

Nov. 3, 2015

U.S. Patent

2061

61 J4NDiId

“UOHNQLASIP INO LM
Q_wc [I'm jeyi yiomisu mC_NNEW UB Sy oIy D49V Wolj 8|00 "JN Ylim ||BDd umw.hm e peyisnf

|eap mMau e paJieys UBLI||OS auLIay}e)

oL6l

ASEL PPY

‘alay syybnoyy InoA ppy

v_._::J
m_.m_‘g . cl6l

W2 0qe@suanlsy « ZL6H-£2S (GGS) | « SeI0Ig DY
Jokng abeiorsg DYV IS ‘SUBA3IS IPISH

e,
O
L=
-~

Jauwwng sy} aiodebuis
pue ealoy 0} 1no Bulysuelg 2149y '$840)g DGV WO JOBJUCD poob Jayioue si siy |

JORIUOD MaU B paJeys ApeIo aie|d

snielg ajepdn

soon | @] ¢ ~ @

a 2I0p s|eoq g salld 2L sysel ¢

at-lw |6

"oliord ISy 0) s|eob ss|es yoedwi-ybly Bulsallag

Wea] OVdVv

%006 < sieed b
X Joyzedwod b

JWOV# b
payjlewjooqg %

SayoIeag paseg

alop

wea] 7 jo9loid

dnoug Jomadwo)

ealy Aeg

wes] Jvdv

wea] vy ja9loid W_m

VSN e20Y-Y

a alop sjpoejuen

syse|

BIOM-M

US 9,177,007 B2

Sheet 22 of 29

Nov. 3, 2015

U.S. Patent

0 34NvId

¥00¢ 4

AN

pojsalejul asje sUoAUR 0} plemio) ases|d “ejonb jo uona|duwon e
wesa] Jvdv

1IN0 } 303YD jMOJ B Ul SYJUOW €
-- aleds 0) YooaMm e }sea| Je UM ejonb aspell sey Wes) sy} 18y} mouy NoA 3| 0} pajUuep
uewijog uyor

910z A sanbBeajjoo Aw | ypm

™ Toz ajeq @so|D

04 Junowy b 2T02 unoooYy
8002 slWieN [ead MeN
300¢ STETT)

soon | @ ¥ 4~ @
A alop sjeaq g so|d ZL syse] ¢ :

[4] $9101S NGV

slomod uopueig m
o)

JoBjuOnD Alewilld

yoaag esiq f@.\
JOUMQ JUNOIDY

IH ‘ninjoucy 6
uoi}e00

$2.10)S

Jonaisia

oav

SI0N

18)lmyeQ IplsH
siaunied % uinqysiy

asea|) uyor
B|0Y] RUOY

ssealn uyor
B|0Y BUOY

8|00 8leq
Buipog oiioed

uassnuissey)
"SI apIMPLIOM

CINIEIEIE

yoseg esi wam
$3101S D9V LY

uosIapuy SlUUy
‘09 KJ|oAoN awoy

SJUN02aYy AN

/

" eloy-)

US 9,177,007 B2

Sheet 23 of 29

Nov. 3, 2015

U.S. Patent

cole

¢ 34N9Id

uonelodion onuepRy |esiaalun pebueyo :Apeigop ale|n

g|eeq « oI « JUBWWOD

pojsalajul as|e SUOAUR 0} plemloy aseald "ejonb jo uona|dwo)

wesajl Jvdv

N0 31 YO8YD MO B Ul SYUOW §
- 2leds 0} yoom B }SB3| JB UjIM BJONb 9pBLl SBY WES)} 8} JBU) MOUY NOA 13| 0} POjUBAA

uewjjos uyopr

A sonBes|joo AW | yum
[43%4

ang) 30T

o} paubissy

¢auop 1ab 0) spasu Jeyp

soon | @ 5 ¥ @

A JIOP s90Nd Z sysel v s|eleq
malay uonenoban - 8 (484414 00S°2b$
sbeig 850|D unowy

e s9sB) 0006 - V

$3101S 0gVY

$9.10]S

ogav

salBojopoylal soes .\
sanunjoddQ pasoln #
saunuoddo yong #

suljadid Ayjunuoddo #

slop

Z1/02/9 000'95%
$95ED 0059 - USASIT-L

Z4/1/9000'00L$
$9583 00001 - BN S

Z1/62/% 000'0L$
$ase) 002 - 0°I'M

ZLILIG 000'S7$
sese) (0GF -uul AeplioH

THiveiv 000°'6ZS
3880 000S - SWdY

Z1/62/% 000'LE$
seseD 000P -S1a 0dled

THTelr 006'2Y$
S3seD 0005 -V

sieaq Al

J

FE

" eloY-)

0012 |\\A

US 9,177,007 B2

Sheet 24 of 29

Nov. 3, 2015

U.S. Patent

80¢T

¢ 34nNoId

®

Apelool el iseg

¢9sea|d Asuow |eulBlio Aw aw punjas NoA uen

-} @busaay siquioz Ang o) BulAly Ajleas sem | uaym soedsg Ul sjeD Ay 0B Ajlejuapiooe |

punjaJ e pasp 102lqng
Hoddng pue a9jAIeg 0]

|lewd ue juss :ApPeJSO a1e|)

ase) |lewg ssep
jueby Aqg sesen

pojeau) sose) [ejo]

- AN

by Ag sase) usdo

14744

alopy
4 uosess z|Lgz Bunds
10} pajsanbal Bojeyeo 80Ud,¥
850£000} L34zt

1ZzoA Ined Ny

clee | aue|D ajou InoA oy syuey |

\] (woorewoe@Abws) Apeigop sreiy ol

Wjusiudiys u paoBb
pebewep Jo peysenbel puney,®

1£9¥0001
4ot souorJojsa Ny

1258000} 1148
103 pireg By

oLcz—~"

A 30 ; -\. J ‘ Jawojsn jlew] VNA

A 3IOp weaj SIIIVY Z s|ieleq

onpoud Joy Buniem Aejdsip ejoy euoy Aidwa ue joB anap
¢aJtay wajqoud ayy s| jeyp puz (Udy Aepliq4 Aq Asaliep ysnJ pasiwold alom apn

"‘PAALLIE 184 J0u sey juawdiys JnQO

1G2€-7b2 (GGS) 49 OEEYEO00L s@10)§ DGV ‘Apeinop a1e|d

N

§9520001 1348
uewyoag Kasen l

TZEPEO00 L HTue
IADT U3ARlS

0gEYE00}
Apeigop ase|n

sased AN

A o

syse|

" eloY-Y

|\\ /ll
0022 ¥0cc

US 9,177,007 B2

Sheet 25 of 29

Nov. 3, 2015

U.S. Patent

[48}4

£€Z2 34n9id

Q_wc [I'm Jey) yJomjeu mC_NmC._m ue sey XoIy jDgy Wod} 8|0D N Yim ||ed jesib e pey isnf

“UORNGLESIP JNO YHM

|eap M3U B paleys UeW||og duULIdYIe)

100G < s[ee@ b
X Jompdwod b

INOVE b
802 A sanbBes|joo Aw | yum posJewnoog %
e |oe|ez|oe| 2| oz] sz e [oe |6z |82] 2 o¢ | 6z | 82 S3yaleag paneg
ve|lez|ee|iz|oz|6|sr||oec|se|ve|ce|lez]| z|oz||e]|oe|se]|we|ce|ee] iz
nlals{w|alalu]]s|a]afoa]s]|rn|e 1o
oo|le|s|zc|lols|v|]lalu]loals]s]sz]|o
elel| s|lvlelz] wea) 7 309[01d
slalo|m|i]n]|s slalo|m|f1]ln]s
momw.\ >_3—.. aunr >m_>_ dnoug 1oadwon
ealy Aeg
0EC ;papeay noA ale ausypp
N p
75 we9,
o © | @ B ¢ A @ vovay | T
A 2l0N s|eaq 8 so|l4zL | SWseLg wes) v josfoid
B o
1*' - -
- 6 dwi-ybiy B
olyoed RISy 0) s|eob sejes yoedwi-ybiy Bulaalag VSN B30y
[+] wea] Jvdv
a aI0[y S1OBJUOD syse| E -
ol o ejoy-)

0oec :‘\

US 9,177,007 B2

Sheet 26 of 29

Nov. 3, 2015

U.S. Patent

core

yZ J4NOId

“UonNQUISIP Jno yiim
djay ||m jey} yiomiau Buizewe ue sey i DGV WoJ) 310D "Il Yim (B0 jealb e pey isnp

B3P MaU & paleys UBWI|[OS duLIdyleD

A sonbea|joo Aw | yum

J00S < slesd b
X Jomedwos b

JNIV# b
poyJewyoog b

sayoueag paneg

A% 74 woo-oge@suonsisy

ZIsy-£es (666) L _

IZ4 $3I015 DgV

Johng Dvdv IS _

=i
O
]
(!

——
-

SUBAS)S IpleH _

4244

“JBWILING siy} eiodeBuig pue ea.0y 0 no Buiyouelq aikey] "sel0)s DGy Wody 1oejuod poob Jsyjoue si siy |

alo

wea] Z j0sloid

dnoug Joyledwon

8Lvg -/

A alopy

O = v ~ @&

A JIOQ

s|jeaq 8

sad 2Tl

syse] ¢

ealy Aeg

wea] Jvdv

wea] vy jo9loid W_m

= N D
/@\uﬂo@\)
2II0Bd BISY 0] s|eob se|es 1oedwi-ybiy Buusalieqg VS B90Y-M
| [] wes| Ovdv L

[- |

a aIo0p sjoejuon

- Rl e|oY-)

00vZ l\i

US 9,177,007 B2

Sheet 27 of 29

Nov. 3, 2015

U.S. Patent

SZ 34Nn9Id

diay [|1m Fey) yomiau Buizewe Ue sey 3oly "Dy Wol 810D "Il UM [[eo yeaub e peyjsnp

[eop MaU B paleys Uew|jog auLayjen

“UOBNGLASIP INO YHM

*ausy s1ybnoyy Jnok ppy

¥0GC

Wod0qe@SUSARISY « ZLGH-E2S (GGS) | « S2U0IS DAY >
laAng abeiorsg DvdY IS ‘SUBAd)S IPIBH -

a1 3 g

3

pue ea10y] 0} 1n0 Bulyoue.q a4 Aay] "SI0l DFY WOy JoeUco poob Jayjoue S| Siy |

JORIUOD MaU e paleys Apeinop oJe|d

Jswiwng siyy alodebuig

100G < sleed b
X Joyedwosn b

IJNOVE b
pajJewnjoog %

S8U01e8S PoAES

S0

wea] 7 jaafoid

dnoug Jomadwo)

snielg sjepdn

A alop

Q= ¥ @

A 3I0N

sjeaqg g

salld ¢l Sysel ¢

‘o10ed BISY 0} s|eob sejes pedwi-ybiy Buueajeg

H 11w |6

wes| JVdv

ealy Aeg

weaj Jvdv E

wea] v jo8loid Mm

VSN BI0)-)

J

~

a alo SJOBJUOD

o K 1oy |

00s5¢ |\

US 9,177,007 B2

Sheet 28 of 29

Nov. 3, 2015

U.S. Patent

¢09¢

9Z FHNOId

pejseusiul @@ BUOAUE 0} plemIo} ases|d “ejonb jo uope|dwon
weal Jvdv

N0 J HOBYD jMOJ B Ul SYjUoW ¢
-- 2/eds 0} YoM B }SBa| J2 Yiim Bjonb spell sey wes) ayj 1By} Mouy nok ja| o) pajuep

uewljog uyopr

fd O Z1L0z ‘o€ Aep

8092 ooo'ors || B 3092 $010)S DAY
¥09¢ 59580 000'0S
o7 SUILIOW € Il BpIM B1E1S
uonnauisip Buipusixs 1o ueid sy) yum puelst Big oyl uo 1onpoid syl N0 158) 0] ||lBwWs Leys o1 Bulob alep

O = ¢ ~ @

A JIOY
a aiop slesq 8 salldzL | syseLeg sliesaq
IH ‘ninjouoH 0 yooag s JW\ SI1aMmod uopuelg @
uofyeson JEUMQ JUNCIOY e Aewnd [N

Jonausia

Sal0)s 08V

13(1m13Q IploH
siouned 9 uinqysid4

aloN

Buimog osyioed

ases|) uyor
e[0Y] BUOY
ases|n uyor
e[0Y] BUOY
310D 3leq

usssnuwissey [en
“'qUISIA IPIMPLIOAA

yoeag esi
$3101S D9V

uosJBpUY BIUUY
‘09 Aj|9oAON awoy

sJUNo2oY A

e

j

syse|

" BIOY)

0092 |||\A

US 9,177,007 B2

Sheet 29 of 29

Nov. 3, 2015

U.S. Patent

v0i2

42 J4N9Id

[{yk4

1IN0} HIBYD iMOJ B Ul SYIUOW €
-- aleds 0 3@am B JSe9| JB U)im Blonb apew Sey wes) sy} ey} Mouy NoA J2| O} PaJUBAA

uewjog uyor

"a1ay syybnoyy InoA ppy

%08
2oUuBLD

Bunoadsoid

$2I0}5 08V S3SED 000°0S 29V

abeis

oy

000° s
00p$IUnoWy 2108
29V

18]|mBQ 1pISH

siauped R uinqysid

alon

SUYILIOW € YJIM Spim S1e)S LongLIsIp

Buipusixe jo ueld ayy yum pueist Big ayy uo Jonpoud syy Ino Bunse) |lewls Lels 0) BuioB a4,9M

[eap mau e paseys AqsBry uosipel

ases|n uyor
B|0Y BUOY

ases|) uyor
B|0)] BUOY

snelg ajepdn

8|09 9leq
Buipog syioed

,\
RPN = (AN

A 210N

s|eaq g8

s9|ld 2l

syse] ¢

sitelaq

IH ‘ninjouoy

uoleso o

yoso9g esi
JBUMQ JUNOJ0Y

L

SI9MOod uopuelg
10BU0D Alewild

5

lonqusia

Salojs OgVv

$2.10)S

ogav

uassnuissey [led

*"qIsIQ SPIMPHOM

yosag esi
s$2l01g DAYy

uoslapuy eluuy

‘09 AjjanoN awoy

SJUNo29Yy AW

syse]

BawoH

BlOM-M

002 ||\\A

US 9,177,007 B2

1
COMPUTER IMPLEMENTED METHODS
AND APPARATUS TO INTERACT WITH
RECORDS USING A PUBLISHER OF AN
INFORMATION FEED OF AN ONLINE
SOCIAL NETWORK

PRIORITY AND RELATED APPLICATION DATA

This patent document claims priority to commonly
assigned U.S. Provisional Patent Application No. 61/646,
465, titled “System and Method for Providing a Unified User
Experience”, by Winters et al., filed on May 14, 2012, which
is hereby incorporated by reference in its entirety and for all
purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material, which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

This patent document relates generally to providing on-
demand services in an online social network using a database
system and, more specifically, to techniques for interacting
with records using a publisher to publish information to a feed
of an online social network.

BACKGROUND

“Cloud computing” services provide shared resources,
software, and information to computers and other devices
upon request. In cloud computing environments, software can
be accessible over the Internet rather than installed locally on
in-house computer systems. Cloud computing typically
involves over-the-Internet provision of dynamically scalable
and often virtualized resources. Technological details can be
abstracted from the users, who no longer have need for exper-
tise in, or control over, the technology infrastructure “in the
cloud” that supports them.

Database resources can be provided in a cloud computing
context. However, using conventional database management
techniques, it is difficult to know about the activity of other
users of a database system in the cloud or other network. For
example, the actions of a particular user, such as a salesper-
son, on a database resource may be important to the user’s
boss. The user can create a report about what the user has done
and send it to the boss, but such reports may be inefficient, not
timely, and incomplete. Also, it may be difficult to identify
other users who might benefit from the information in the
report.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
operations for the disclosed inventive systems, apparatus, and
methods to interact with records using a publisher to publish
information to an information feed of an online social net-
work. These drawings in no way limit any changes in form

10

15

20

25

30

35

45

55

60

2

and detail that may be made by one skilled in the art without
departing from the spirit and scope of the disclosed imple-
mentations.

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations.

FIG. 7 shows an example of a group feed on a group page
according to some implementations.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations.

FIG. 9A shows an example of a plurality of tables that may
be used in tracking events and creating feeds according to
some implementations.

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions.

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations.

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations.

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations.

FIG. 15 shows a flowchart of an example of a computer
implemented method 1500 to interact with records using a
publisher to publish information to an information feed of an
online social network, performed in accordance with some
implementations.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 to interact with records using a

US 9,177,007 B2

3

publisher to publish information to an information feed of an
online social network, performed in accordance with some
implementations.

FIG. 17 shows a flowchart of an example of a computer
implemented method 1700 for presenting a record in an infor-
mation feed of an online social network, performed in accor-
dance with some implementations.

FIG. 18 shows an example of a group page 1800 in the form
of'a graphical user interface (GUI) as displayed on a display
device, according to some implementations.

FIG. 19 shows an example of a group page 1900 in the form
of'a GUI as displayed on a display device, according to some
implementations.

FIG. 20 shows an example of an account page 2000 in the
form of a GUI as displayed on a display device, according to
some implementations.

FIG. 21 shows an example of a deal page 2100 in the form
of'a GUI as displayed on a display device, according to some
implementations.

FIG. 22 shows an example of a case page 2200 in the form
of'a GUI as displayed on a display device, according to some
implementations.

FIG. 23 shows an example of a group page 2300 in the form
of'a GUI as displayed on a display device, according to some
implementations.

FIG. 24 shows an example of a group page 2400 in the form
of'a GUI as displayed on a display device, according to some
implementations.

FIG. 25 shows an example of a group page 2500 in the form
of'a GUI as displayed on a display device, according to some
implementations.

FIG. 26 shows an example of an account page 2600 in the
form of a GUI as displayed on a display device, according to
some implementations.

FIG. 27 shows an example of an account page 2700 in the
form of a GUI as displayed on a display device, according to
some implementations.

DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according to
the disclosed implementations are described in this section.
These examples are being provided solely to add context and
aid in the understanding of the disclosed implementations. It
will thus be apparent to one skilled in the art that implemen-
tations may be practiced without some or all of these specific
details. In other instances, certain process/method operations,
also referred to herein as “blocks,” have not been described in
detail in order to avoid unnecessarily obscuring implementa-
tions. Other applications are possible, such that the following
examples should not be taken as definitive or limiting either in
scope or setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific implementations. Although these implementations
are described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other imple-
mentations may be used and changes may be made without
departing from their spirit and scope. For example, the blocks
of methods shown and described herein are not necessarily
performed in the order indicated. It should also be understood
that the methods may include more or fewer blocks than are
indicated. In some implementations, blocks described herein

10

15

20

25

30

35

40

45

50

55

60

65

4

as separate blocks may be combined. Conversely, what may
be described herein as a single block may be implemented in
multiple blocks.

Various implementations described or referenced herein
are directed to different methods, apparatus, systems, and
computer-readable storage media for creating records using a
publisher of an information feed in an online social network,
also referred to herein as a social networking system. One
example of an online social network is Chatter®, provided by
salesforce.com, inc. of San Francisco, Calif. Online social
networks are increasingly becoming a common way to facili-
tate communication among people and groups of people, any
of whom can be recognized as users of a social networking
system. Some online social networks can be implemented in
various settings, including organizations, e.g., enterprises
such as companies or business partnerships, academic insti-
tutions, or groups within such an organization. For instance,
Chatter® can be used by employee users in a division of a
business organization to share data, communicate, and col-
laborate with each other for various purposes.

In some online social networks, users can access one or
more information feeds, which include information updates
presented as items or entries in the feed. Such a feed item can
include a single information update or a collection of indi-
vidual information updates. A feed item can include various
types of data including character-based data, audio data,
image data and/or video data. An information feed can be
displayed in a graphical user interface (GUI) on a display
device such as the display of a computing device as described
below. The information updates can include various social
network data from various sources and can be stored in an
on-demand database service environment. In some imple-
mentations, the disclosed methods, apparatus, systems, and
computer-readable storage media may be configured or
designed for use in a multi-tenant database environment.

In some implementations, an online social network may
allow a user to follow data objects in the form of records such
as cases, accounts, or opportunities, in addition to following
individual users and groups of users. The “following” of a
record stored in a database, as described in greater detail
below, allows a user to track the progress of that record.
Updates to the record, also referred to herein as changes to the
record, are one type of information update that can occur and
be noted on an information feed such as a record feed or a
news feed of a user subscribed to the record. Examples of
record updates include field changes in the record, updates to
the status of a record, as well as the creation of the record
itself. Some records are publicly accessible, such that any
user can follow the record, while other records are private, for
which appropriate security clearance/permissions are a pre-
requisite to a user following the record.

Information updates can include various types of updates,
which may or may not be linked with a particular record. For
example, information updates can be user-submitted mes-
sages or can otherwise be generated in response to user
actions or in response to events. Examples of messages
include: posts, comments, indications of a user’s personal
preferences such as “likes™ and “dislikes”, updates to a user’s
status, uploaded files, and hyperlinks to social network data or
other network data such as various documents and/or web
pages on the Internet. Posts can include alpha-numeric or
other character-based user inputs such as words, phrases,
statements, questions, emotional expressions, and/or sym-
bols. Comments generally refer to responses to posts, such as
words, phrases, statements, answers, questions, and reaction-
ary emotional expressions and/or symbols. Multimedia data
can be included in, linked with, or attached to a post or

US 9,177,007 B2

5

comment. For example, a post can include textual statements
in combination with a JPEG image or animated image. A like
or dislike can be submitted in response to a particular post or
comment. Examples of uploaded files include presentations,
documents, multimedia files, and the like.

Users can follow a record by subscribing to the record, as
mentioned above. Users can also follow other entities such as
other types of data objects, other users, and groups of users.
Feed tracked updates regarding such entities are one type of
information update that can be received and included in the
user’s news feed. Any number of users can follow a particular
entity and thus view information updates pertaining to that
entity on the users’ respective news feeds. In some social
networks, users may follow each other by establishing con-
nections with each other, sometimes referred to as “friend-
ing” one another. By establishing such a connection, one user
may be able to see information generated by, generated about,
or otherwise associated with another user. For instance, a first
user may be able to see information posted by a second user
to the second user’s personal social network page. One imple-
mentation of such a personal social network page is a user’s
profile page, for example, in the form of a web page repre-
senting the user’s profile. In one example, when the first user
is following the second user, the first user’s news feed can
receive a post from the second user submitted to the second
user’s profile feed, also referred to herein as the user’s “wall,”
which is one example of an information feed displayed on the
user’s profile page.

In some implementations, an information feed may be
specific to a group of users of an online social network. For
instance, a group of users may publish a news feed. Members
of the group may view and post to this group feed in accor-
dance with a permissions configuration for the feed and the
group. Information updates in a group context can also
include changes to group status information.

In some implementations, when data such as posts or com-
ments input from one or more users are submitted to an
information feed for a particular user, group, object, or other
construct within an online social network, an email notifica-
tion or other type of network communication may be trans-
mitted to all users following the user, group, or object in
addition to the inclusion of the data as a feed item in one or
more feeds, such as a user’s profile feed, a news feed, or a
record feed. In some online social networks, the occurrence of
such a notification is limited to the first instance of a published
input, which may form part of a larger conversation. For
instance, a notification may be transmitted for an initial post,
but not for comments on the post. In some other implemen-
tations, a separate notification is transmitted for each such
information update.

Some implementations of the disclosed systems, appara-
tus, methods, and computer readable storage media are con-
figured to provide a unified user interface that enables a user
to interact with records using an online social network such as
Chatter® offered by salesforce.com, inc. For instance, the
disclosed techniques can be implemented to create and
update fields of a Customer Relationship Management
(CRM) object such as an account, a lead, a contact, a task,
and/or an opportunity using a publisher of an information
feed.

As more and more users and organizations migrate toward
more collaborative sharing models to communicate and con-
duct business, there is a desire to expose, enhance and better
utilize structured information stored in traditional CRM sys-
tems and unstructured information, such as emails, text mes-
sages, and posts in a feed. Conventionally, CRM systems and
online social networking tools separately co-exist. Structured

30

35

40

45

50

55

60

6

information is often organized, categorized and searchable
and can be easily stored, for instance, in a relational database.
In contrast, unstructured information lacks any such struc-
ture. For example, a post or acomment to a feed can be stored
by date, time, and by the user who submitted it, but the content
of'the information update remains unstructured and not easily
searchable. However, as noted above, businesses can use
online social networks such as Chatter® to communicate and
collaborate about CRM objects. As such, a significant and
pertinent amount of useful business information about
accounts, cases and other CRM objects is generated in an
unstructured form in a feed, but is not easily accessible from
CRM system.

In some CRM systems, a user may access different appli-
cations specifically configured to interact and interface with
CRM databases to create, view and update records. Then, the
user separately accesses an online social network, like Chat-
ter®, to collaborate with other users about newly created
and/or updated records. The separation between traditional
CRM systems and online social networking tools can present
some drawbacks.

In an illustrative example, a record, such as a K-Kola
account, is referenced by different entities, such as contacts,
opportunities, tasks, contracts, documents, emails, informa-
tion updates and conversation threads. However, the K-Kola
account page in a CRM system may only include recent
account updates, and may not identify recent messages, con-
versation threads, contacts, tasks, or other records related to
the account. In this scenario, if a user desires to view all
relevant information about the K-Kola account, he may have
to navigate to each contact, opportunity, task, etc. and per-
form numerous database queries to retrieve relevant informa-
tion. Then, further searches through posts and comments in
relevant users’ profile feeds, emails, and a K-Kola group feed
may be needed to retrieve all relevant messages and conver-
sations about the account. As such, the onus is on the user to
mentally compile all of the relevant information of the
account and determine how the information discussed in the
group feed or in an email is related to the account in order to
obtain a comprehensive understanding about the K-Kola
account.

As the example illustrates, the burden is on the user to
switch and navigate among different applications to find,
view, digest and discuss information related to a record with
other users. Additionally, the onus is on the user to search and
compile all of the relevant information of a record to obtain a
holistic understanding of the record. This can be cumber-
some, time consuming and unproductive.

As noted above, some of the disclosed implementations are
directed at mechanisms to provide a unified user interface that
enables a user to create and update database records using an
online social network. In other words, online social networks,
such as Chatter® and Facebook®, are used as the main inter-
face to interact with records of a CRM system. In some
instances, the disclosed systems, apparatus, methods, and
computer readable storage media are configured for interact-
ing with a record using a publisher of an information feed. For
example, a user, Madison Rigsby, may navigate to an account
page of ABC Store. In this example, Madison may select a
button displayed in a user interface to indicate that she wishes
to create a new opportunity. The publisher automatically gen-
erates a form for Madison to enter details about the opportu-
nity, such as the name of the opportunity, the account or
accounts that the opportunity is related to, the monetary
amount of the opportunity, a closing date, and various other
information related to the opportunity. Additionally, Madison
may use the publisher to post a message, such as a comment

US 9,177,007 B2

7

or a status update, to provide background information about
the new opportunity. In this example, Madison may compose
a post such as, “We’re going to start out small to test out the
product on the big island with the plan of extending distribu-
tion state-wide within 3 months.”

Using the publisher, Madison can create a new opportunity
in a database system. The creation of the new opportunity or
any other type of record via the publisher may trigger a feed
tracked update that results in a feed item including informa-
tion describing the new opportunity to be displayed in an
information feed of the ABC Store page. In this way, using a
publisher of an online social network, Madison can easily
manipulate and interact with traditional CRM objects as well
as generate unstructured information, such as comments and
status updates to be published to a feed, to provide useful
business content about the opportunity. In this example,
Madison provides an explanation of why the opportunity is
small and describes future business plans. As such, the pub-
lisher provides a main interface to interact with and view
relevant information of and about records, without the need to
switch among different applications or interfaces.

In some implementations, a feed item that includes infor-
mation about a record may include selectable actions to inter-
act with the record. For example, the selectable action may be
a “like” button or a text box to include a comment. In other
examples, the selectable action may include a graphical but-
ton to create and assign a task related to a record, such as an
opportunity. In other examples, the selectable action may be
used to create other types of records, such as contacts or an
event related to the opportunity.

Furthermore, the mechanisms described herein may allow
a user to create a record using a publisher and also view
contextual and historical data of the new and related records
by displaying the information in an information feed. For
example, with reference to the ABC Store account example
discussed above, the account page may display a feed item in
an information feed that includes information describing the
new opportunity discussed above, as well as information
identifying other records related to the ABC Store account,
such as other opportunities, cases, contacts and tasks. Addi-
tionally, ABC store’s information feed may include feed
items in the form of user-submitted posts and comments.

In some implementations, the selection of information
related to arecord to include in a feed item may depend on one
or more factors. For example, the information displayed in an
information feed may depend on a user’s permission and
clearance to view certain types of information. In another
example, the information displayed in the information feed
may depend on other factors, such as a role of a user in an
organization, an indication that an update to a record was
performed by a designated entity, and/or various other fac-
tors. In instances where a user’s permissions or clearance to
interact with a record is a factor, it should be understood that
implicit groups of users can be defined when any such users
have the same permission(s) with respect to the record. The
implicit group of users thus has an implicit unified feed of
data in the form ofthe record feed that is secure for that group.
The shared permissions to a specific record essentially define
the implied group. For example, in one organization, a subset
of the employees has access to Opportunity A but not to
Opportunities B and C. Permissions are defined to give the
subset of employees specific rights to access and interact with
the Opportunity A record. Thus, the subset of employees are
an implied group by virtue of their shared permissions to
Opportunity A, and those employees can work and collabo-
rate with each other as a unified group in a feed including feed
items pertaining to Opportunity A and any child records of

30

40

45

50

55

8

Opportunity A. Explicit groups of users can be defined within
or outside of the implied group.

These and other implementations may be embodied in
various types of hardware, software, firmware, and combina-
tions thereof. For example, some techniques disclosed herein
may be implemented, at least in part, by computer-readable
media that include program instructions, state information,
etc., for performing various services and operations described
herein. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher-level code that may be executed by a com-
puting device such as a server or other data processing appa-
ratus using an interpreter. Examples of computer-readable
media include, but are not limited to, magnetic media such as
hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROM disks; magneto-optical media; and hard-
ware devices that are specially configured to store program
instructions, such as read-only memory (“ROM”) devices
and random access memory (“RAM”) devices. These and
other features of the disclosed implementations will be
described in more detail below with reference to the associ-
ated drawings.

The term “multi-tenant database system” can refer to those
systems in which various elements of hardware and software
of a database system may be shared by one or more custom-
ers. For example, a given application server may simulta-
neously process requests for a great number of customers, and
a given database table may store rows of data such as feed
items for a potentially much greater number of customers.
The term “query plan” generally refers to one or more opera-
tions used to access information in a database system.

A “user profile” or “user’s profile” is generally configured
to store and maintain data about a given user of the database
system. The data can include general information, such as
name, title, phone number, a photo, a biographical summary,
and a status, e.g., text describing what the user is currently
doing. As mentioned below, the data can include messages
created by other users. Where there are multiple tenants, a
user is typically associated with a particular tenant. For
example, a user could be a salesperson of a company, which
is a tenant of the database system that provides a database
service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a user (custom object). For example, a
record can be for a business partner or potential business
partner (e.g., a client, vendor, distributor, etc.) of the user, and
can include information describing an entire company, sub-
sidiaries, or contacts at the company. As another example, a
record can be a project that the user is working on, such as an
opportunity (e.g., a possible sale) with an existing partner, or
a project that the user is trying to get. In one implementation
of'a multi-tenant database system, each record for the tenants
has a unique identifier stored in a common table. A record has
data fields that are defined by the structure of the object (e.g.,
fields of certain data types and purposes). A record can also
have custom fields defined by a user. A field can be another
record or include links thereto, thereby providing a parent-
child relationship between the records.

The terms “information feed” and “feed” are used inter-
changeably herein and generally refer to a combination (e.g.,
a list) of feed items or entries with various types of informa-
tion and data. Such feed items can be stored and maintained in
one or more database tables, e.g., as rows in the table(s), that

US 9,177,007 B2

9

can be accessed to retrieve relevant information to be pre-
sented as part of a displayed feed. The term “feed item™ (or
feed element) refers to an item of information, which can be
presented in the feed such as a post submitted by a user. Feed
items of information about a user can be presented in a user’s
profile feed of the database, while feed items of information
about a record can be presented in a record feed in the data-
base, by way of example. A profile feed and a record feed are
examples of different information feeds. A second user fol-
lowing a first user and a record can receive the feed items
associated with the first user and the record for display in the
second user’s news feed, which is another type of information
feed. In some implementations, the feed items from any num-
ber of followed users and records can be combined into a
single information feed of a particular user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
a record or profile, such as a change to a field of the record.
Feed tracked updates are described in greater detail below. A
feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for a user’s profile or for a record. Posts can be created
by various users, potentially any user, although some restric-
tions can be applied. As an example, posts can be made to a
wall section of a user’s profile page (which can include a
number of recent posts) or a section of a record that includes
multiple posts. The posts can be organized in chronological
order when displayed in a graphical user interface (GUI), for
instance, on the user’s profile page, as part of the user’s profile
feed. In contrast to a post, a user status update changes a status
of'a user and can be made by that user or an administrator. A
record can also have a status, the update of which can be
provided by an owner of the record or other users having
suitable write access permissions to the record. The owner
can be a single user, multiple users, or a group. In one imple-
mentation, there is only one status for a record.

In some implementations, a comment can be made on any
feed item. In some implementations, comments are organized
as alistexplicitly tied to a particular feed tracked update, post,
or status update. In some implementations, comments may
not be listed in the first layer (in a hierarchal sense) of feed
items, but listed as a second layer branching from a particular
first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” is one type of information update and generally
refers to data representing an event. A feed tracked update can
include text generated by the database system in response to
the event, to be provided as one or more feed items for
possible inclusion in one or more feeds. In one implementa-
tion, the data can initially be stored, and then the database
system can later use the data to create text for describing the
event. Both the data and/or the text can be a feed tracked
update, as used herein. In various implementations, an event
can be an update of a record and/or can be triggered by a
specific action by a user. Which actions trigger an event can be
configurable. Which events have feed tracked updates created
and which feed updates are sent to which users can also be
configurable. Messages and feed updates can be stored as a
field or child object of the record. For example, the feed can be
stored as a child object of the record.

A “group” is generally a collection of users. In some imple-
mentations, the group may be defined as users with a same or
similar attribute, or by membership. In some implementa-
tions, a “group feed”, also referred to herein as a “group news
feed”, includes one or more feed items about any user in the

10

15

20

25

30

35

40

45

50

55

60

65

10

group. In some implementations, the group feed also includes
information updates and other feed items that are about the
group as a whole, the group’s purpose, the group’s descrip-
tion, and group records and other objects stored in association
with the group. Threads of information updates including
group record updates and messages, such as posts, comments,
likes, etc., can define group conversations and change over
time.

An “entity feed” or “record feed” generally refers to a feed
of'feed items about a particular record in the database, such as
feed tracked updates about changes to the record and posts
made by users about the record. An entity feed can be com-
posed of any type of feed item. Such a feed can be displayed
on a page such as a web page associated with the record, e.g.,
ahome page of the record. As used herein, a “profile feed” or
“user’s profile feed” is a feed of feed items about a particular
user. In one example, the feed items for a profile feed include
posts and comments that other users make about or send to the
particular user, and status updates made by the particular user.
Such a profile feed can be displayed on a page associated with
the particular user. In another example, feed items in a profile
feed could include posts made by the particular user and feed
tracked updates initiated based on actions of the particular
user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information net-
working. Such implementations can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Implementations can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

By way of example, a user can update a record, e.g., an
opportunity such as a possible sale of 1000 computers. Once
the record update has been made, a feed tracked update about
the record update can then automatically be provided, e.g., in
afeed, to anyone subscribing to the opportunity or to the user.
Thus, the user does not need to contact a manager regarding
the change in the opportunity, since the feed tracked update
about the update is sent via a feed right to the manager’s feed
page or other page.

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to several
implementations. First, an overview of an example of a data-
base system is described, and then examples of tracking
events for a record, actions of a user, and messages about a
user or record are described. Various implementations about
the data structure of feeds, customizing feeds, user selection
of records and users to follow, generating feeds, and display-
ing feeds are also described.

II. System Overview

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations. Environment
10 may include user systems 12, network 14, database system
16, processor system 17, application platform 18, network
interface 20, tenant data storage 22, system data storage 24,
program code 26, and process space 28. In other implemen-
tations, environment 10 may not have all of these components
and/or may have other components instead of, or in addition
to, those listed above.

Environment 10 is an environment in which an on-demand
database service exists. User system 12 may be implemented
as any computing device(s) or other data processing appara-
tus such as amachine or system that is used by a userto access

US 9,177,007 B2

11

a database system 16. For example, any of user systems 12
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of such computing
devices. As illustrated in FIG. 1A (and in more detail in FIG.
1B) user systems 12 might interact via a network 14 with an
on-demand database service, which is implemented in the
example of FIG. 1A as database system 16.

An on-demand database service, implemented using sys-
tem 16 by way of example, is a service that is made available
to outside users, who do not need to necessarily be concerned
with building and/or maintaining the database system.
Instead, the database system may be available for their use
when the users need the database system, i.e., on the demand
of the users. Some on-demand database services may store
information from one or more tenants into tables of a common
database image to form a multi-tenant database system
(MTS). A database image may include one or more database
objects. A relational database management system (RDBMS)
or the equivalent may execute storage and retrieval of infor-
mation against the database object(s). Application platform
18 may be a framework that allows the applications of system
16 to run, such as the hardware and/or software, e.g., the
operating system. In some implementations, application plat-
form 18 enables creation, managing and executing one or
more applications developed by the provider of the on-de-
mand database service, users accessing the on-demand data-
base service via user systems 12, or third party application
developers accessing the on-demand database service via
user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson
is using a particular user system 12 to interact with system 16,
that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to
interact with system 16, that user system has the capacities
allotted to that administrator. In systems with a hierarchical
role model, users at one permission level may have access to
applications, data, and database information accessible by a
lower permission level user, but may not have access to cer-
tain applications, database information, and data accessible
by a user at a higher permission level. Thus, different users
will have different capabilities with regard to accessing and
modifying application and database information, depending
on a user’s security or permission level, also called authori-
zation.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. Network 14 can include a TCP/IP (Transfer
Control Protocol and Internet Protocol) network, such as the
global internetwork of networks often referred to as the
“Internet” with a capital “I.” The Internet will be used in many
of'the examples herein. However, it should be understood that
the networks that the present implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.

User systems 12 might communicate with system 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12
might include an HTTP client commonly referred to as a
“browser” for sending and receiving HTTP signals to and

20

40

45

50

12

from an HTTP server at system 16. Such an HTTP server
might be implemented as the sole network interface 20
between system 16 and network 14, but other techniques
might be used as well or instead. In some implementations,
the network interface 20 between system 16 and network 14
includes load sharing functionality, such as round-robin
HTTP request distributors to balance loads and distribute
incoming HTTP requests evenly over a plurality of servers. At
least for users accessing system 16, each of the plurality of
servers has access to the MTS’ data; however, other alterna-
tive configurations may be used instead.

In one implementation, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one implementation, system
16 includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object in tenant data
storage 22, however, tenant data typically is arranged in the
storage medium(s) of tenant data storage 22 so that data of
one tenant is kept logically separate from that of other tenants
so that one tenant does not have access to another tenant’s
data, unless such data is expressly shared. In certain imple-
mentations, system 16 implements applications other than, or
in addition to, a CRM application. For example, system 16
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into
one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

One arrangement for elements of system 16 is shown in
FIGS. 1A and 1B, including a network interface 20, applica-
tion platform 18, tenant data storage 22 for tenant data 23,
system data storage 24 for system data 25 accessible to sys-
tem 16 and possibly multiple tenants, program code 26 for
implementing various functions of system 16, and a process
space 28 for executing MTS system processes and tenant-
specific processes, such as running applications as part of an
application hosting service. Additional processes that may
execute on system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. The
term “computing device” is also referred to herein simply as
a “computer”. User system 12 typically runs an HTTP client,
e.g., a browsing program, such as Microsoft’s Internet
Explorer browser, Netscape’s Navigator browser, Opera’s
browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., subscriber of the multi-tenant database system) of
user system 12 to access, process and view information, pages
and applications available to it from system 16 over network
14. Each user system 12 also typically includes one or more
user input devices, such as a keyboard, a mouse, trackball,
touch pad, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., a monitor screen, LCD display, etc.) of the

US 9,177,007 B2

13

computing device in conjunction with pages, forms, applica-
tions and other information provided by system 16 or other
systems or servers. For example, the user interface device can
be used to access data and applications hosted by system 16,
and to perform searches on stored data, and otherwise allow a
user to interact with various GUI pages that may be presented
to a user. As discussed above, implementations are suitable
for use with the Internet, although other networks can be used
instead of or in addition to the Internet, such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

According to one implementation, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 16 (and additional instances of
an MTS, where more than one is present) and all of its com-
ponents might be operator configurable using application(s)
including computer code to run using processor system 17,
which may be implemented to include a central processing
unit, which may include an Intel Pentium® processor or the
like, and/or multiple processor units. Non-transitory com-
puter-readable media can have instructions stored thereon/in,
that can be executed by or used to program a computing
device to perform any of the methods of the implementations
described herein. Computer program code 26 implementing
instructions for operating and configuring system 16 to inter-
communicate and to process web pages, applications and
other data and media content as described herein is preferably
downloadable and stored on a hard disk, but the entire pro-
gram code, or portions thereof, may also be stored in any
other volatile or non-volatile memory medium or device as is
well known, such as a ROM or RAM, or provided on any
media capable of storing program code, such as any type of
rotating media including floppy disks, optical discs, digital
versatile disk (DVD), compact disk (CD), microdrive, and
magneto-optical disks, and magnetic or optical cards, nano-
systems (including molecular memory ICs), or any other type
of computer-readable medium or device suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and downloaded
from a software source over a transmission medium, e.g., over
the Internet, or from another server, as is well known, or
transmitted over any other conventional network connection
as is well known (e.g., extranet, VPN, LAN, etc.) using any
communication medium and protocols (e.g., TCP/IP, HTTP,
HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for the disclosed implemen-
tations can be realized in any programming language that can
be executed on a client system and/or server or server system
such as, for example, C, C++, HIML, any other markup
language, Java™, JavaScript, ActiveX, any other scripting
language, such as VBScript, and many other programming
languages as are well known may be used. (Java™ is a trade-
mark of Sun Microsystems, Inc.).

According to some implementations, each system 16 is
configured to provide web pages, forms, applications, data
and media content to user (client) systems 12 to support the
access by user systems 12 as tenants of system 16. As such,
system 16 provides security mechanisms to keep each ten-
ant’s data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically

20

40

45

55

14

connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” is
meant to refer to a computing device or system, including
processing hardware and process space(s), an associated stor-
age medium such as a memory device or database, and, in
some instances, a database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the database objects described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements. That is, FIG. 1B
also illustrates environment 10. However, in FIG. 1B ele-
ments of system 16 and various interconnections in some
implementations are further illustrated. FIG. 1B shows that
user system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows that
system 16 may include tenant data storage 22, tenant data 23,
system data storage 24, system data 25, User Interface (UI)
30, Application Program Interface (API) 32, PL/SOQL 34,
save routines 36, application setup mechanism 38, applica-
tions servers 1001-100N, system process space 102, tenant
process spaces 104, tenant management process space 110,
tenant storage space 112, user storage 114, and application
metadata 116. In other implementations, environment 10 may
not have the same elements as those listed above and/or may
have other elements instead of, or in addition to, those listed
above.

User system 12, network 14, system 16, tenant data storage
22, and system data storage 24 were discussed above in FIG.
1A. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system
12B may be any combination of one or more memory devices,
short term, and/or long term memory. Input system 12C may
be any combination of input devices, such as one or more
keyboards, mice, trackballs, scanners, cameras, and/or inter-
faces to networks. Output system 12D may be any combina-
tion of output devices, such as one or more monitors, printers,
and/or interfaces to networks. As shown by FIG. 1B, system
16 may include a network interface 20 (of FIG. 1A) imple-
mented as a set of HTTP application servers 100, an applica-
tion platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, includ-
ing individual tenant process spaces 104 and a tenant man-
agement process space 110. Each application server 100 may
be configured to communicate with tenant data storage 22 and
the tenant data 23 therein, and system data storage 24 and the
system data 25 therein to serve requests of user systems 12.
The tenant data 23 might be divided into individual tenant
storage spaces 112, which can be either a physical arrange-
ment and/or a logical arrangement of data. Within each tenant
storage space 112, user storage 114 and application metadata
116 might be similarly allocated for each user. For example,
a copy of a user’s most recently used (MRU) items might be
stored to user storage 114. Similarly, a copy of MRU items for
an entire organization thatis a tenant might be stored to tenant
storage space 112. A UI 30 provides a user interface and an
API 32 provides an application programmer interface to sys-
tem 16 resident processes to users and/or developers at user
systems 12. The tenant data and the system data may be stored
in various databases, such as one or more Oracle databases.

US 9,177,007 B2

15

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process spaces
104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language implementations is discussed in
commonly assigned U.S. Pat. No. 7,730,478, titled
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman,
issued on Jun. 1, 2010, and hereby incorporated by reference
in its entirety and for all purposes. Invocations to applications
may be detected by one or more system processes, which
manage retrieving application metadata 116 for the sub-
scriber making the invocation and executing the metadata as
an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connection.
For example, one application server 1001 might be coupled
via the network 14 (e.g., the Internet), another application
server 100N-1 might be coupled via a direct network link,
and another application server 100N might be coupled by yet
a different network connection. Transfer Control Protocol
and Internet Protocol (TCP/IP) are typical protocols for com-
municating between application servers 100 and the database
system. However, it will be apparent to one skilled in the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain implementations, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
100. In one implementation, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one implementa-
tion, the load balancer uses a least connections algorithm to
route user requests to the application servers 100. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example, in
certain implementations, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, by way of example,
system 16 is multi-tenant, wherein system 16 handles storage
of, and access to, different objects, data and applications
across disparate users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 22). In an example of a MTS arrangement, since all of the
data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson

20

25

40

45

55

16

is visiting a customer and the customer has Internet access in
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-
specific data, system 16 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain implementations, user systems 12 (which may be
client systems) communicate with application servers 100 to
request and update system-level and tenant-level data from
system 16 that may involve sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects according to
some implementations. It should be understood that “table”
and “object” may be used interchangeably herein. Each table
generally contains one or more data categories logically
arranged as columns or fields in a viewable schema. Each row
or record of a table contains an instance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by
all tenants. For CRM database applications, such standard
entities might include tables for case, account, contact, lead,
and opportunity data objects, each containing pre-defined
fields. It should be understood that the word “entity” may also
be used interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom index fields. Commonly assigned U.S. Pat. No. 7,779,
039, titled CUSTOM ENTITIES AND FIELDS IN A
MULTI-TENANT DATABASE SYSTEM, by Weissman et
al., issued on Aug. 17, 2010, and hereby incorporated by
reference in its entirety and for all purposes, teaches systems
and methods for creating custom objects as well as custom-
izing standard objects in a multi-tenant database system. In
certain implementations, for example, all custom entity data
rows are stored in a single multi-tenant physical table, which

US 9,177,007 B2

17

may contain multiple logical tables per organization. It is
transparent to customers that their multiple “tables” are in fact
stored in one large table or that their data may be stored in the
same table as the data of other customers.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations. A cli-
ent machine located in the cloud 204, generally referring to
one or more networks in combination, as described herein,
may communicate with the on-demand database service envi-
ronment via one or more edge routers 208 and 212. A client
machine can be any of the examples of user systems 12
described above. The edge routers may communicate with
one or more core switches 220 and 224 via firewall 216. The
core switches may communicate with a load balancer 228,
which may distribute server load over different pods, such as
the pods 240 and 244. The pods 240 and 244, which may each
include one or more servers and/or other computing
resources, may perform data processing and other operations
used to provide on-demand services. Communication with
the pods may be conducted via pod switches 232 and 236.
Components of the on-demand database service environment
may communicate with a database storage 256 via a database
firewall 248 and a database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
database service environment may involve communications
transmitted among a variety of different hardware and/or
software components. Further, the on-demand database ser-
vice environment 200 is a simplified representation of an
actual on-demand database service environment. For
example, while only one or two devices of each type are
shown in FIGS. 2A and 2B, some implementations of an
on-demand database service environment may include any-
where from one to many devices of each type. Also, the
on-demand database service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
database service environment 200 may be implemented on
the same physical device or on different hardware. Some
devices may be implemented using hardware or a combina-
tion of hardware and software. Thus, terms such as “data
processing apparatus,” “machine,” “server” and “device” as
used herein are not limited to a single hardware device, but
rather include any hardware and software configured to pro-
vide the described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet. Client
machines located in the cloud 204 may communicate with the
on-demand database service environment to access services
provided by the on-demand database service environment.
For example, client machines may access the on-demand
database service environment to retrieve, store, edit, and/or
process information.

In some implementations, the edge routers 208 and 212
route packets between the cloud 204 and other components of
the on-demand database service environment 200. The edge
routers 208 and 212 may employ the Border Gateway Proto-
col (BGP). The BGP is the core routing protocol of the Inter-
net. The edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’, which designate network reachability
among autonomous systems on the Internet.

In one or more implementations, the firewall 216 may
protect the inner components of the on-demand database
service environment 200 from Internet traffic. The firewall
216 may block, permit, or deny access to the inner compo-
nents of the on-demand database service environment 200

29 <

20

25

30

40

45

18

based upon a set of rules and other criteria. The firewall 216
may act as one or more of a packet filter, an application
gateway, a stateful filter, a proxy server, or any other type of
firewall.

In some implementations, the core switches 220 and 224
are high-capacity switches that transfer packets within the
on-demand database service environment 200. The core
switches 220 and 224 may be configured as network bridges
that quickly route data between different components within
the on-demand database service environment. In some imple-
mentations, the use of two or more core switches 220 and 224
may provide redundancy and/or reduced latency.

In some implementations, the pods 240 and 244 may per-
form the core data processing and service functions provided
by the on-demand database service environment. Each pod
may include various types of hardware and/or software com-
puting resources. An example of the pod architecture is dis-
cussed in greater detail with reference to FIG. 2B.

In some implementations, communication between the
pods 240 and 244 may be conducted via the pod switches 232
and 236. The pod switches 232 and 236 may facilitate com-
munication between the pods 240 and 244 and client
machines located in the cloud 204, for example via core
switches 220 and 224. Also, the pod switches 232 and 236
may facilitate communication between the pods 240 and 244
and the database storage 256.

In some implementations, the load balancer 228 may dis-
tribute workload between the pods 240 and 244. Balancing
the on-demand service requests between the pods may assist
in improving the use of resources, increasing throughput,
reducing response times, and/or reducing overhead. The load
balancer 228 may include multilayer switches to analyze and
forward traffic.

In some implementations, access to the database storage
256 may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall oper-
ating at the database application layer of a protocol stack. The
database firewall 248 may protect the database storage 256
from application attacks such as structure query language
(SQL) injection, database rootkits, and unauthorized infor-
mation disclosure.

In some implementations, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of data-
base traffic and block certain content or database requests.
The database firewall 248 may work on the SQL application
level atop the TCP/IP stack, managing applications’ connec-
tion to the database or SQL management interfaces as well as
intercepting and enforcing packets traveling to or from a
database network or application interface.

In some implementations, communication with the data-
base storage 256 may be conducted via the database switch
252. The multi-tenant database storage 256 may include more
than one hardware and/or software components for handling
database queries. Accordingly, the database switch 252 may
direct database queries transmitted by other components of
the on-demand database service environment (e.g., the pods
240 and 244) to the correct components within the database
storage 256.

In some implementations, the database storage 256 is an
on-demand database system shared by many different orga-
nizations. The on-demand database system may employ a
multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system is
discussed in greater detail with reference to FIGS. 1A and 1B.

US 9,177,007 B2

19

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions. The pod 244 may be used to render services to a user of
the on-demand database service environment 200. In some
implementations, each pod may include a variety of servers
and/or other systems. The pod 244 includes one or more
content batch servers 264, content search servers 268, query
servers 282, file force servers 286, access control system
(ACS) servers 280, batch servers 284, and app servers 288.
Also, the pod 244 includes database instances 290, quick file
systems (QFS) 292, and indexers 294. In one or more imple-
mentations, some or all communication between the servers
in the pod 244 may be transmitted via the switch 236.

In some implementations, the app servers 288 may include
a hardware and/or software framework dedicated to the
execution of procedures (e.g., programs, routines, scripts) for
supporting the construction of applications provided by the
on-demand database service environment 200 via the pod
244. In some implementations, the hardware and/or software
framework of an app server 288 is configured to execute
operations of the services described herein, including perfor-
mance of the blocks of methods described with reference to
FIGS.15-27. In alternative implementations, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers described herein can be
configured to perform the disclosed methods.

The content batch servers 264 may handle requests internal
to the pod. These requests may be long-running and/or not
tied to a particular customer. For example, the content batch
servers 264 may handle requests related to log mining,
cleanup work, and maintenance tasks.

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by the
content search servers 268 may allow users to search through
content stored in the on-demand database service environ-
ment.

The file force servers 286 may manage requests for infor-
mation stored in the Fileforce storage 298. The Fileforce
storage 298 may store information such as documents,
images, and basic large objects (BLOBs). By managing
requests for information using the file force servers 286, the
image footprint on the database may be reduced.

The query servers 282 may be used to retrieve information
from one or more file systems. For example, the query system
282 may receive requests for information from the app serv-
ers 288 and then transmit information queries to the NFS 296
located outside the pod.

The pod 244 may share a database instance 290 configured
as a multi-tenant environment in which different organiza-
tions share access to the same database. Additionally, services
rendered by the pod 244 may call upon various hardware
and/or software resources. In some implementations, the ACS
servers 280 may control access to data, hardware resources,
or software resources.

In some implementations, the batch servers 284 may pro-
cess batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to other
servers, such as the app servers 288, to trigger the batch jobs.

In some implementations, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available within
the pod 244. The QFS 292 may support some volume man-
agement capabilities, allowing many disks to be grouped
together into a file system. File system metadata can be kept
on a separate set of disks, which may be useful for streaming

20

25

40

45

50

55

20

applications where long disk seeks cannot be tolerated. Thus,
the QFS system may communicate with one or more content
search servers 268 and/or indexers 294 to identify, retrieve,
move, and/or update data stored in the network file systems
296 and/or other storage systems.

In some implementations, one or more query servers 282
may communicate with the NFS 296 to retrieve and/or update
information stored outside of the pod 244. The NFS 296 may
allow servers located in the pod 244 to access information to
access files over a network in a manner similar to how local
storage is accessed.

In some implementations, queries from the query servers
222 may be transmitted to the NFS 296 via the load balancer
228, which may distribute resource requests over various
resources available in the on-demand database service envi-
ronment. The NFS 296 may also communicate with the QFS
292 to update the information stored on the NFS 296 and/or to
provide information to the QFS 292 for use by servers located
within the pod 244.

In some implementations, the pod may include one or more
database instances 290. The database instance 290 may trans-
mit information to the QFS 292. When information is trans-
mitted to the QFS, it may be available for use by servers
within the pod 244 without using an additional database call.

In some implementations, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file force
servers 286 and/or the QFS 292.

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when a
record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when
there is an update to the record. For example, a vendor may
negotiate a new price with a salesperson of company X, where
the salesperson is a user associated with tenant Y. As part of
creating a new invoice or for accounting purposes, the sales-
person can change the price saved in the database. It may be
important for co-workers to know that the price has changed.
The salesperson could send an email to certain people, but this
is onerous and the salesperson might not email all of the
people who need to know or want to know. Accordingly, some
implementations of the disclosed techniques can inform oth-
ers (e.g., co-workers) who want to know about an update to a
record automatically.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.
Method 300 (and other methods described herein) may be
implemented at least partially with multi-tenant database sys-
tem 16, e.g., by one or more processors configured to receive
orretrieve information, process the information, store results,
and transmit the results. In other implementations, method
300 may be implemented at least partially with a single tenant
database system. In various implementations, blocks may be
omitted, combined, or split into additional blocks for method
300, as well as for other methods described herein.

In block 310, the database system receives a request to
update a first record. In one implementation, the request is
received from a first user. For example, a user may be access-
ing a page associated with the first record, and may change a
displayed field and hit save. In another implementation, the
database system can automatically create the request. For
instance, the database system can create the request in
response to another event, e.g., a request to change a field
could be sent periodically at a particular date and/or time of

US 9,177,007 B2

21

day, or a change to another field or object. The database
system can obtain a new value based on other fields of a
record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for which
a feed tracked update may be created. In other implementa-
tions, the database system can identify other events besides
updates to fields of a record. For example, an event can be a
submission of approval to change a field. Such an event can
also have an associated field (e.g., a field showing a status of
whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record,
converting a record from one type to another (e.g., converting
a lead to an opportunity), closing a record (e.g., a case type
record), and potentially any other state change of a record—
any of which could include a field change associated with the
state change. Any of these events update the record whether
by changing a field of the record, a state of the record, or some
other characteristic or property of the record. In one imple-
mentation, a list of supported events for creating a feed
tracked update can be maintained within the database system,
e.g., at a server or in a database.

In block 320, the database system writes new data to the
first record. In one implementation, the new data may include
a new value that replaces old data. For example, a field is
updated with a new value. In another implementation, the new
data can be a value for a field that did not contain data before.
In yet another implementation, the new data could be a flag,
e.g., for a status of the record, which can be stored as a field of
the record.

In some implementations, a “field” can also include
records, which are child objects of the first record in a parent-
child hierarchy. A field can alternatively include a pointerto a
child record. A child object itself can include further fields.
Thus, if a field of a child object is updated with a new value,
the parent record also can be considered to have a field
changed. In one example, a field could be a list of related child
objects, also called a related list.

In block 330, a feed tracked update is generated about the
update to the record. In one implementation, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and tracked
in a first table, and changed field entries can be tracked in
another table that is cross-referenced with the first table. More
specifics of such implementations are provided later, e.g.,
with respect to FIG. 9A. In another implementation, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that the
first record has been updated and provide details about what
was updated in the record and who performed the update. In
some implementations, a feed tracked update is generated for
only certain types of event and/or updates associated with the
first record.

In one implementation, a tenant (e.g., through an adminis-
trator) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of desig-
nated types such as accounts and opportunities are enabled.
When an update (or other event) is received for the enabled
record type, then a feed tracked update would be generated. In
another implementation, a tenant can also specify the fields of
a record whose changes are to be tracked, and for which feed
tracked updates are created. In one aspect, a maximum num-
ber of fields can be specified for tracking, and may include
custom fields. In one implementation, the type of change can
also be specified, for example, that the value change of a field
is to be larger than a threshold (e.g., an absolute amount or a

10

15

20

25

30

35

40

45

50

55

60

65

22

percentage change). In yet another implementation, a tenant
can specify which events are to cause a generation of a feed
tracked update. Also, in one implementation, individual users
can specify configurations specific to them, which can create
custom feeds as described in more detail below.

In one implementation, changes to fields of a child object
are not tracked to create feed tracked updates for the parent
record. In another implementation, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking. As another
example, if the child object is of a type specified for tracking,
then a tracked change for the child object is propagated to
parent records of the child object.

In block 340, the feed tracked update is added to a feed for
the first record. In one implementation, adding the feed
tracked update to a feed can include adding events to a table
(which may be specific to a record or be for all or a group of
objects), where a display version of a feed tracked update can
be generated dynamically and presented in a GUI as a feed
item when a user requests a feed for the first record. In another
implementation, a display version of a feed tracked update
can be added when a record feed is stored and maintained for
a record. As mentioned above, a feed may be maintained for
only certain records. In one implementation, the feed of a
record can be stored in the database associated with the
record. For example, the feed can be stored as a field (e.g., as
achild object) of the record. Such a field can store a pointer to
the text to be displayed for the feed tracked update.

In some implementations, only the current feed tracked
update (or other current feed item) may be kept or temporarily
stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent change
to any particular field is kept. In other implementations, many
previous feed tracked updates may be kept in the feed. A time
and/or date for each feed tracked update can be tracked.
Herein, a feed of a record is also referred to as an entity feed,
as a record is an instance of a particular entity object of the
database.

In block 350, followers of the first record can be identified.
A follower is a user following the first record, such as a
subscriber to the feed of the first record. In one implementa-
tion, when a user requests a feed of a particular record, such
an identification of block 350 can be omitted. In another
implementation where a record feed is pushed to a user (e.g.,
as part of a news feed), then the user can be identified as a
follower of the first record. Accordingly, this block can
include the identification of records and other objects being
followed by a particular user.

In one implementation, the database system can store a list
of'the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or associated
with the record using an identifier (e.g., a pointer) to retrieve
the list. For example, the list can be stored in a field of the first
record. In another implementation, a list of the records that a
user is following is used. In one implementation, the database
system can have a routine that runs for each user, where the
routine polls the records in the list to determine if a new feed
tracked update has been added to a feed of the record. In
another implementation, the routine for the user can be run-
ning at least partially on a user device, which contacts the
database to perform the polling.

In block 360, in one implementation, the feed tracked
update can be stored in a table, as described in greater detail
below. When the user opens a feed, an appropriate query is
sent to one or more tables to retrieve updates to records, also

US 9,177,007 B2

23

described in greater detail below. In some implementations,
the feed shows feed tracked updates in reverse chronological
order. In one implementation, the feed tracked update is
pushed to the feed of a user, e.g., by a routine that determines
the followers for the record from a list associated with the
record. In another implementation, the feed tracked update is
pulled to a feed, e.g., by auser device. This pulling may occur
when a user requests the feed, as occurs in block 370. Thus,
these actions may occur in a different order. The creation of
the feed for a pull may be a dynamic creation that identifies
records being followed by the requesting user, generates the
display version of relevant feed tracked updates from stored
information (e.g., event and field change), and adds the feed
tracked updates into the feed. A feed of feed tracked updates
of records and other objects that a user is following is also
generally referred to herein as a news feed, which can be a
subset of a larger information feed in which other types of
information updates appear, such as posts.

In yet another implementation, the feed tracked update
could be sent as an email to the follower, instead of in a feed.
In one implementation, email alerts for events can enable
people to be emailed when certain events occur. In another
implementation, emails can be sent when there are posts on a
user profile and posts on entities to which the user subscribes.
In one implementation, a user can turn on/off email alerts for
all or some events. In an implementation, a user can specify
what kind of feed tracked updates to receive about a record
that the user is following. For example, a user can choose to
only receive feed tracked updates about certain fields of a
record that the user is following, and potentially about what
kind of update was performed (e.g., a new value input into a
specified field, or the creation of a new field).

Inblock 370, a follower can access his/her news feed to see
the feed tracked update. In one implementation, the user has
just one news feed for all of the records that the user is
following. In one aspect, a user can access his/her own feed by
selecting a particular tab or other object on a page of an
interface to the database system. Once selected the feed can
be provided as a list, e.g., with an identifier (e.g., a time) or
including some or all of the text of the feed tracked update. In
another implementation, the user can specify how the feed
tracked updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed
(e.g., importance flags).

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations. Database system configuration 400 can
perform implementations of method 300, as well as imple-
mentations of other methods described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various implementations, the request 1 can be
sent via a user interface (e.g., 30 of FIG. 1B) or an application
program interface (e.g., AP132). An I/O port 420 can accom-
modate the signals of request 1 via any input interface, and
send the signals to one or more processors 417. The processor
417 can analyze the request and determine operations to be
performed. Herein, any reference to a processor 417 can refer
to a specific processor or any set of processors in database
system 416, which canbe collectively referred to as processor
417.

Processor 417 can determine an identifier for record 425,
and send commands with the new data 2 of the request to

40

45

50

65

24

record database 412 to update record 425. In one implemen-
tation, record database 412 is where tenant storage space 112
of FIG. 1B is located. The request 1 and new data commands
2 can be encapsulated in a single write transaction sent to
record database 412. In one implementation, multiple
changes to records in the database can be made in a single
write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g., a
change to a particular field) is to be tracked. This determina-
tion can be based on an interaction (i.e., an exchange of data)
with record database 412 and/or other databases, or based on
information stored locally (e.g., in cache or RAM) at proces-
sor 417. In one implementation, a list of record types that are
being tracked can be stored. The list may be different for each
tenant, e.g., as each tenant may configure the database system
to its own specifications. Thus, if the record 425 is of a type
not being tracked, then the determination of whether to create
a feed tracked update can stop there.

The same list or a second list (which can be stored in a same
location or a different location) can also include the fields
and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being
tracked. A list may also contain information having the granu-
larity of listing specific records that are to be tracked (e.g., if
a tenant can specify the particular records to be tracked, as
opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g., obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the record
identifier can be used to determine the record type and a list of
tracked types can be searched for a match. The specific record
may also be checked if such individual record tracking was
enabled. The name of the field to be changed can also be used
to search a list of tracking-enabled fields. Other criteria
besides field and events can be used to determine whether a
feed tracked update is created, e.g., type of change in the field.
If a feed tracked update is to be generated, processor 417 can
then generate the feed tracked update.

In some implementations, a feed tracked update is created
dynamically when a feed (e.g., the entity feed of record 425)
is requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed for
record 425. In this implementation, the feed tracked update
may be created (e.g., assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more event history tables can keep
track of previous events so that the feed tracked update can be
re-created.

In another implementation, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily retrieved.
For example, after the feed tracked update has been gener-
ated, processor 417 can add the new feed tracked update 3 to
a feed of record 425. As mentioned above, in one implemen-
tation, the feed can be stored in a field (e.g., as a child object)
of record 425. In another implementation, the feed can be
stored in another location or in another database, but with a

US 9,177,007 B2

25

link (e.g., a connecting identifier) to record 425. The feed can
be organized in various ways, e.g., as a linked list, an array, or
other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one implementation, second user 430
can send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g., with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or down-
loaded.

In another implementation, processor 417 can add the new
feed tracked update 5 to a feed (e.g., anews feed) of a user that
is following record 425. In one implementation, processor
417 can determine each of the followers of record 425 by
accessing a list of the users that have been registered as
followers. This determination can be done for each new event
(e.g., update 1). In another implementation, processor 417
can poll (e.g., with a query) the records that second user 430
is following to determine when new feed tracked updates (or
other feed items) are available. Processor 417 can use a fol-
lower profile 435 of second user 430 that can contain a list of
the records that the second user 430 is following. Such a list
can be contained in other parts of the database as well. Second
user 430 can then send a request 6 to his/her profile 435 to
obtain a feed, which contains the new feed tracked update.
The user’s profile 435 can be stored in a profile database 414,
which can be the same or different than database 412.

In some implementations, a user can define a news feed to
include new feed tracked updates from various records, which
may be limited to a maximum number. In one implementa-
tion, each user has one news feed. In another implementation,
the follower profile 435 can include the specifications of each
of the records to be followed (with the criteria for what feed
tracked updates are to be provided and how they are dis-
played), as well as the feed.

Some implementations can provide various types of record
(entity) feeds. Entity Feeds can exist for record types like
account, opportunity, case, and contact. An entity feed can tell
a user about the actions that people have taken on that par-
ticular record or on one its related records. The entity feed can
include who made the action, which field was changed, and
the old and new values. In one implementation, entity feeds
can exist on all supported records as a list that is linked to the
specific record. For example, a feed could be stored in a field
that allows lists (e.g., linked lists) or as a child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what a
particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the
feed tracked update (e.g., a user submitting a synopsis of what
the user has done). Accordingly, implementations can auto-
matically track actions of a user that trigger events, and feed
tracked updates can be generated for certain events.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations. Method 500 may be
performed in addition to method 300. The operations of
method 300, including order of blocks, can be performed in
conjunction with method 500 and other methods described
herein. Thus, a feed can be composed of changes to a record
and actions of users.

In block 510, a database system (e.g., 16 of FIGS. 1A and
1B) identifies an action of a first user. In one implementation,
the action triggers an event, and the event is identified. For
example, the action of a user requesting an update to a record

10

15

20

25

30

35

40

45

50

55

60

65

26

can be identified, where the event is receiving a request or is
the resulting update of a record. The action may thus be
defined by the resulting event. In another implementation,
only certain types of actions (events) are identified. Which
actions are identified can be set as a default or can be config-
urable by a tenant, or even configurable at a user level. In this
way, processing effort can be reduced since only some actions
are identified.

In block 520, it is determined whether the event qualifies
for afeed tracked update. In one implementation, a predefined
list of events (e.g., as mentioned herein) can be created so that
only certain actions are identified. In one implementation, an
administrator (or other user) of a tenant can specify the type of
actions (events) for which a feed tracked update is to be
generated. This block may also be performed for method 300.

In block 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The description
can be altered though to focus on the user as opposed to the
record. For example, “John D. has closed a new opportunity
for account XYZ” as opposed to “an opportunity has been
closed for account XYZ.’

In block 540, the feed tracked update is added to a profile
feed of the first user when, e.g., the user clicks on a tab to open
a page in a browser program displaying the feed. In one
implementation, a feed for a particular user can be accessed
on a page of the user’s profile, in a similar manner as a record
feed can be accessed on a detail page of the record. In another
implementation, the first user may not have a profile feed and
the feed tracked update may just be stored temporarily before
proceeding. A profile feed of a user can be stored associated
with the user’s profile. This profile feed can be added to a
news feed of another user.

In block 550, followers of the first user are identified. In
one implementation, a user can specify which type of actions
other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants
to follow. In an implementation where different followers
follow different types of actions, which users are followers of
that user and the particular action can be identified, e.g., using
various lists that track what actions and criteria are being
followed by a particular user. In various implementations, the
followers of the first user can be identified in a similar manner
as followers of a record, as described above for block 350.

In block 560, the feed tracked update is added to a news
feed of each follower of the first user when, e.g., the follower
clicks on a tab to open a page displaying the news feed. The
feed tracked update can be added in a similar manner as the
feed items for a record feed. The news feed can contain feed
tracked updates both about users and records. In another
implementation, a user can specify what kind of feed tracked
updates to receive about a user that the user is following. For
example, a user could specify feed tracked updates with par-
ticular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

Inblock 570, a follower accesses the news feed and sees the
feed tracked update. In one implementation, the user has just
one news feed for all of the records that the user is following.
In another implementation, a user can access his/her own feed
(i.e. feed about his’her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

US 9,177,007 B2

27

V. Generation of a Feed Tracked Update

As described above, some implementations can generate
text describing events (e.g., updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked updates
for various events in various ways.

In one implementation, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another implementation, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g., submitted for approval), and the names
of particular users that are responsible for replying or acting
on the feed tracked update may be also provided. The feed
tracked update can also have a level of importance based on
settings chosen by the administrator, a particular user request-
ing an update, or by a following user who is to receive the feed
tracked update, which fields is updated, a percentage of the
change in a field, the type of event, or any combination of
these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g., a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of
verbs (which may be provided as defaults or input by an
administrator of a tenant). In one implementation, feed
tracked updates can be generic containers with formatting
restrictions,

As an example of a feed tracked update for a creation of a
new record, “Mark Abramowitz created a new Opportunity
for IBM—20,000 laptops with Amount as $3.5M and Sam
Palmisano as Decision Maker.” This event can be posted to
the profile feed for Mark Abramowitz and the entity feed for
record of Opportunity for IBM-20,000 laptops. The pattern
can be given by (AgentFullName) created a new (Object-
Name)(RecordName) with [(FieldName) as (FieldValue)
[,/and]]*[[added/changed/removed] (RelatedListRecord-
Name) [as/to/as] (RelatedListRecordValue) [,/and]]*. Simi-
lar patterns can be formed for a changed field (standard or
custom) and an added child record to a related list.

V1. Tracking Commentary from or about a User

Some implementations can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted as part or all of a message by
auser, the text can be about any topic. Thus, more information
than just actions of a user and events of a record can be
conveyed. In one implementation, the messages can be used
to ask a question about a particular record, and users follow-
ing the record can provide comments and responses.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations. In one implementation, method 600 can be
combined with methods 300 and 500. In one aspect, a mes-
sage can be associated with the first user when the first user
creates the message (e.g., a post or comment about a record or
another user). In another aspect, a message can be associated
with the first user when the message is about the first user
(e.g., posted by another user on the first user’s profile feed).

Inblock 610, the database system receives a message (e.g.,
a post or status update) associated with a first user. The mes-
sage (e.g., a post or status update) can contain text and/or
multimedia content submitted by another user or by the first
user. In one implementation, a post is for a section of the first
user’s profile page where any user can add a post, and where

30

40

45

50

28

multiple posts can exist. Thus, a post can appear on the first
user’s profile page and can be viewed when the first user’s
profile is visited. For a message about a record, the post can
appear on a detail page of a record. Note the message can
appear in other feeds as well. In another implementation, a
status update about the first user can only be added by the first
user. In one implementation, a user can only have one status
message.

In block 620, the message is added to a table, as described
in greater detail below. When the feed is opened, a query
filters one or more tables to identify the first user, identify
other persons that the user is following, and retrieve the
message. Messages and record updates are presented in a
combined list as the feed. In this way, in one implementation,
the message can be added to a profile feed of the first user,
which is associated (e.g., as a related list) with the first user’s
profile. In one implementation, the posts are listed indefi-
nitely. In another implementation, only the most recent posts
(e.g., last 50) are kept in the profile feed. Such implementa-
tions can also be employed with feed tracked updates. In yet
another implementation, the message can be added to a pro-
file of the user adding the message.

In block 630, the database system identifies followers of
the first user. In one implementation, the database system can
identify the followers as described above for method 500. In
various implementations, a follower can select to follow a
feed about the actions of the first user, messages about the first
user, or both (potentially in a same feed).

In block 640, the message is added to a news feed of each
follower. In one implementation, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular keyword
orother criteria. In another implementation, a message can be
deleted by the user who created the message. In one imple-
mentation, once deleted by the author, the message is deleted
from all feeds to which the message had been added.

Inblock 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed on
the follower’s own profile page. As another example, the
follower can have a news feed sent to his’her own desktop
without having to first go to a home page.

In block 660, the database system receives a comment
about the message. The database system can add the comment
to a feed of the same first user, much as the original message
was added. In one implementation, the comment can also be
added to a feed of a second user who added the comment. In
one implementation, users can also reply to the comment. In
another implementation, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another implementation, mak-
ing a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

In one implementation, if a feed tracked update or post is
deleted, its corresponding comments are deleted as well. In
another implementation, new comments on a feed tracked
update or post do not update the feed tracked update times-
tamp. Also, the feed tracked update or post can continue to be
shown in a feed (profile feed, record feed, or news feed) if it
has had a comment within a specified timeframe (e.g., within
the last week). Otherwise, the feed tracked update or post can
be removed in an implementation.

In some implementations, all or most feed tracked updates
can be commented on. In other implementations, feed tracked
updates for certain records (e.g., cases or ideas) are not com-
mentable. In various implementations, comments can be

US 9,177,007 B2

29

made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

In block 670, the comment is added to a news feed of each
follower. In one implementation, a user can make the com-
ment within the user’s news feed. Such a comment can propa-
gate to the appropriate profile feed or record feed, and then to
the news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In one
aspect, feeds are a way to stay up-to-date (e.g., on users,
opportunities, etc.) as well as an opportunity to reach out to
co-workers/partners and engage them around common goals.

In some implementations, users can rate feed tracked
updates or messages (including comments). A user can
choose to prioritize a display of a feed so that higher rated
feed items show up higher on a display. For example, in an
implementation where comments are answers to a specific
question, users can rate the different status posts so that a best
answer can be identified. As another example, users are able
to quickly identify feed items that are most important as those
feed items can be displayed at a top of a list. The order of the
feed items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one implementation, the rating is on a scale that
includes at least 3 values. In another implementation, the
rating is based on a binary scale.

Besides a profile for a user, a group can also be created. In
various implementations, the group can be created based on
certain attributes that are common to the users, can be created
by inviting users, and/or can be created by receiving requests
to join from a user. In one implementation, a group feed can
be created, with messages being added to the group feed when
someone submits a message to the group as a whole through
a suitable user interface. For example, a group page may have
a group feed or a section within the feed for posts, and a user
can submit a post through a publisher component in the user
interface by clicking on a “Share” or similar button. In
another implementation, a message can be added to a group
feed when the message is submitted about any one of the
members. Also, agroup feed can include feed tracked updates
about actions of the group as a whole (e.g., when an admin-
istrator changes data in a group profile or a record owned by
the group), or about actions of an individual member.

FIG. 7 shows an example of a group feed on a group page
according to some implementations. As shown, a feed item
710 shows that a user has posted a document to the group
object. The text “Bill Bauer has posted the document Com-
petitive Insights” can be generated by the database system in
a similar manner as feed tracked updates about a record being
changed. A feed item 720 shows a post to the group, along
with comments 730 from Ella Johnson, James Saxon, Mary
Moore and Bill Bauer.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations. Feed item 810 shows a feed tracked update based
on the event of submitting a discount for approval. Other feed
items show posts, e.g., from Bill Bauer, that are made to the
record and comments, e.g., from Erica Law and Jake Rapp,
that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows an example of a plurality of feed tracked
update tables that may be used in tracking events and creating
feeds according to some implementations. The tables of FIG.
9 A may have entries added, or potentially removed, as part of
tracking events in the database from which feed items are
creates or that correspond to feed items. In one implementa-

10

15

20

25

30

35

40

45

50

55

60

30

tion, each tenant has its own set of tables that are created
based on criteria provided by the tenant.

An event history table 910 can provide a feed tracked
update of events from which feed items are created. In one
aspect, the events are for objects that are being tracked. Thus,
table 910 can store and change feed tracked updates for feeds,
and the changes can be persisted. In various implementations,
event history table 910 can have columns of event ID 911,
object ID 912 (also called parent ID), and created by 1D 913.
The event ID 911 can uniquely identify a particular event and
can start at 1 (or other number or value).

Each new event can be added chronologically with a new
event ID, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is being
changed. For example, the object ID can correspond to the
record whose field is being changed or the user whose feed is
receiving a post. The created by ID 913 can track the user who
is performing the action that results in the event, e.g., the user
that is changing the field or that is posting a message to the
profile of another user.

In one implementation, a name of an event can also be
stored in table 910. In one implementation, a tenant can
specify events that they want tracked. In an implementation,
event history table 910 can include the name of the field that
changed (e.g., old and new values). In another implementa-
tion, the name of the field, and the values, are stored in a
separate table. Other information about an event (e.g., text of
comment, feed tracked update, post or status update) can be
stored in event history table 910, or in other tables, as is now
described.

A field change table 920 can provide a feed tracked update
of the changes to the fields. The columns of table 920 can
include an event ID 921 (which correlates to the event ID
911), an old value 922 for the field, and the new value 923 for
the field. In one implementation, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

A comment table 930 can provide a feed tracked update of
the comments made regarding an event, e.g., a comment on a
post or a change of a field value. The columns of table 930 can
include an event ID 921 (which correlates to the event ID
911), the comment column 932 that stores the text of the
comment, and the time/date 933 of the comment. In one
implementation, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

A user subscription table 940 can provide a list of the
objects being followed (subscribed to) by a user. In one imple-
mentation, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object
being followed. In one implementation, the object being fol-
lowed can be a record or a user. As shown, the user with 1D
U819 is following object IDs 0615 and 0489. [fuser U819 is
following other objects, then additional entries may exist for
user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a
user adds or deletes an object that is being followed.

In one implementation, regarding a profile feed and a news
feed, these are read-only views on the event history table 910
specialized for these feed types. Conceptually the news feed
can be a semi join between the user subscription table 940 and
the event history table 910 on the object IDs 912 and 942 for
the user. In one aspect, these entities can have polymorphic
parents and can be subject to a number of restrictions detailed
herein, e.g., to limit the cost of sharing checks.

In one implementation, entity feeds are modeled in the API
as a feed associate entity (e.g., AccountFeed, CaseFeed, etc).

US 9,177,007 B2

31

A feed associate entity includes information composed of
events (e.g., event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to par-
ticular event entries in event history table 910. Since the
account feed table only contains some of the records (not all),
the query can run faster.

In one implementation, there may be objects with no events
listed in the event history table 910, even though the record is
being tracked. In this case, the database service can return a
result indicating that no feed items exist.

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events being
tracked for a record or auser. In one implementation, all of the
feed items in a single transaction (event) can be grouped
together and have the same event ID. A single transaction
relates to the operations that can be performed in a single
communication with the database. In another implementation
where a feed is an object of the database, a feed item can be a
child of a profile feed, news feed, or entity feed. If a feed item
is added to multiple feeds, the feed item can be replicated as
a child of each feed to which the feed item is added.

In some implementations, a comment exists as an item that
depends from feed tracked updates, posts, status updates, and
other items that are independent of each other. Thus, a feed
comment object can exist as a child object of a feed item
object. For example, comment table 930 can be considered a
child table of event history table 910. In one implementation,
a feed comment can be a child of a profile feed, news feed, or
entity feed that is separate from other feed items.

In one implementation, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g., 25) and
searches the most recent (e.g., 4) comments for each feed
item. The comments can be identified via the comment table
930. In one implementation, a user can request to see more
comments, e.g., by selecting a see more link.

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one implementa-
tion, a user can specify changes to a field that meet certain
criteria for the feed item to show up in a feed displayed to the
user, e.g., a news feed or even an entity feed displayed directly
to the user. In one implementation, the criteria can be com-
bined with other factors (e.g., number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g., below a threshold),
then all of the feed items may be displayed.

In one implementation, a user can specify the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a query.
Such an added query can be added onto a standard query that
is used to create the news feed for a user. A first user could
specify the users and records that the first user is following in
this manner, as well as identify the specific feed items that the
first user wants to follow. The query could be created through
a graphical interface or added by a user directly in a query
language. Other criteria could include receiving only posts
directed to a particular user or record, as opposed to other feed
items.

20

35

40

45

55

32

In one implementation, a user can access a feed of a record
if the user can access the record. The security rules for deter-
mining whether a user has access to arecord can be performed
in a variety of ways, some of which are described in com-
monly assigned U.S. Pat. No. 8,095,531, titted METHODS
AND SYSTEMS FOR CONTROLLING ACCESS TO CUS-
TOM OBJECTS IN A DATABASE, by Weissman et al.,
issued on Jan. 10, 2012, and hereby incorporated by reference
in its entirety and for all purposes.

In one implementation, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another implementation, a user (besides an
administrator) cannot edit a feed item, except for performing
an action from which a feed item can be created. In one
example, auser is first has to have access to a particular record
and field for a feed item to be created based on an action of the
user. In this case, an administrator can be considered to be a
user with MODIFY-ALL-DATA security level. In yet another
implementation, a user who created the record can edit the
feed.

Inone implementation, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event history table 910. Post table 950 can include event ID
951 (to cross-reference with event ID 911), post text 952 to
store the text of the post, and time/date 953. An entry in post
table 950 can be considered a feed post object.

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Implementations can provide mechanisms for a user
to manage which users, groups, and records that the user is
currently following. In one implementation, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one implementation, a user can go to a page of a record
and then select to follow that object (e.g., with a button
marked “follow” or “join”). In another implementation, a user
can search for a record and have the matching records show
up in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g., an opportunity with a value of
more than $10,000).

A follow button (or other activation object) can then reside
next to each record in the resulting list, and the follow button
can be selected to start following the record. Similarly, a user
can go to a profile page of a user and select to follow the user,
or a search for users can provide a list, where one or more
users can be selected for following from the list. The selec-
tions of subscribing and unsubscribing can add and delete
rows in table 920.

In some implementations, a subscription center acts as a
centralized place in a database application (e.g., application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
implementation, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
implementation, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-

US 9,177,007 B2

33

tions. Any of the following blocks can be performed wholly or
partially with the database system, and in particular by one or
more processor of the database system.

In block 901, one or more properties of an object stored in
the database system are received. The properties can be
received from administrators of the database system, or from
users of the database system (which may be an administrator
of'a customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated
with, the second user’s position in the same organization, and
which other users the user had emailed or worked with on
projects.

In block 902, the database system receives one or more
criteria about which users are to automatically follow the
object. Examples of the criteria can include: an owner or
creator of a record is to follow the record, subordinates of an
owner or creator of a record are to follow the record, and a
user is to follow his/her manager, the user’s peers, other users
in the same business group as the user, and other users that the
user has emailed or worked with on a project. The criteria can
be specific to a user or group of users (e.g., users of a tenant).

In block 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one implementation, this determi-
nation can occur by first obtaining the criteria and then deter-
mining objects that satisfy the criteria. The determination can
occur periodically, at time of creation of an object, or at other
times.

In block 904, if the criteria are satisfied, the object is
associated with the first user. The association can be in a list
that stores information as to what objects are being followed
by the first user. User subscription table 940 is an example of
such a list. In one implementation, the one or more criteria are
satisfied if one property satisfies at least one criterion. Thus, if
the criteria are that a user follows his’her manager and the
object is the user’s manager, then the first user will follow the
object.

In one implementation, a user can also be automatically
unsubscribed, e.g., if a certain action happens. The action
could be a change in the user’s position within the organiza-
tion, e.g., a demotion or becoming a contractor. As another
example, if a case gets closed, then users following the case
may be automatically unsubscribed.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined herein.
Various feeds can be generated. For example, a feed can be
generated about a record or about a user. Then, users can view
these feeds. A user can separately view a feed of a record or
user, e.g., by going to a home page for the user or the record.
As described above, a user can also follow another user or
record and receive the feed items of those feeds through a
separate feed application. The feed application can provide
each of the feeds that a user is following and, in some
examples, can combine various feeds in a single information
feed.

A feed generator can refer to any software program running
on a processor or a dedicated processor (or combination
thereof) that can generate feed items (e.g., feed tracked
updates or messages) and combine them into a feed. In one
implementation, the feed generator can generate a feed item

10

15

20

25

30

35

40

45

50

55

60

65

34

by receiving a feed tracked update or message, identifying
what feeds the item should be added to, and adding the feed.
Adding the feed can include adding additional information
(metadata) to the feed tracked update or message (e.g., adding
a document, sender of message, a determined importance,
etc.). The feed generator can also check to make sure that no
one sees feed tracked updates for data that they don’t have
access 1o see (e.g., according to sharing rules). A feed gen-
erator can run at various times to pre-compute feeds or to
compute them dynamically, or combinations thereof.

In one implementation, processor 417 in FIG. 4 can iden-
tify an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can also
identify a message. For example, an application interface can
have certain mechanisms for submitting a message (e.g.,
“submit” buttons on a profile page, detail page of a record,
“comment” button on post), and use of these mechanisms can
be used to identity a message to be added to a table used to
create a feed or added directly to a list of feed items ready for
display.

A. Adding Items to a Pre-Computed Feed

In some implementations, a feed of feed items is created
before a user requests the feed. Such an implementation can
run fast, but have high overall costs for storage. In one imple-
mentation, once a profile feed or a record feed has been
created, a feed item (messages and feed tracked updates) can
be added to the feed. The feed can exist in the database system
in avariety of ways, such as arelated list. The feed can include
mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated feed
of all the record feeds and profile feeds to which a user has
subscribed. The news feed can be provided on the home page
of'the subscribing user. Therefore, a news feed can be created
by and exist for a particular user. For example, a user can
subscribe to receive entity feeds of certain records that are of
interest to the user, and to receive profile feeds of people that
are of interest (e.g., people on a same team, that work for the
user, are a boss of the user, etc.). A news feed can tell a user
about all the actions across all the records (and people) whom
have explicitly (or implicitly) been subscribed to via the sub-
scriptions center (described above).

In one implementation, only one instance of each feed
tracked update is shown on a user’s news feed, even if the feed
tracked update is published in multiple entities to which the
user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity feed tracked
update persistence. Different feeds may have different delays
(e.g., delay for new feeds, but none of profile and entity
feeds). In another implementation, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g., due
to sharing rules (which restrict which users can see which
data). Also, in one implementation, data of the record that has
beenupdated (which includes creation) can be provided in the
feed (e.g., a file or updated value of a feed can be added as a
flash rendition).

B. Dynamically Generating Feeds

Insome implementations, a feed generator can generate the
feed items dynamically when a user requests to see a particu-
lar feed, e.g., a profile feed, entity feed, or the user’s news
feed. In one implementation, the most recent feed items (e.g.,
top 50) are generated first. In one aspect, the other feed items
can be generated as a background process, e.g., not synchro-
nously with the request to view the feed. However, since the
background process is likely to complete before a user gets to
the next 50 feed items, the feed generation may appear syn-

US 9,177,007 B2

35

chronous. In another aspect, the most recent feed items may
or may not include comments, e.g., that are tied to feed
tracked updates or posts.

In one implementation, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display. For
example, the feed generator can query the event history table
910 for the updates that occurred for a particular record. The
1D of the particular record can be matched against the ID of
the record. In one implementation, changes to a whole set of
records can be stored in one table. The feed generator can also
query for status updates, posts, and comments, each of which
can be stored in different parts of a record or in separate
tables, as shown in FIG. 9A. What gets recorded in the entity
event history table (as well as what is displayed) can be
controlled by a feed settings page in setup, which can be
configurable by an administrator and can be the same for the
entire organization, as is described above for custom feeds.

In one implementation, there can be two feed generators.
For example, one generator can generate the record and pro-
file feeds and another generator can generate news feeds. For
the former, the feed generator can query identifiers of the
record or the user profile. For the latter, the news feed gen-
erator can query the subscribed profile feeds and record feeds,
e.g., user subscription table 940. In one implementation, the
feed generator looks at a person’s subscription center to
decide which feeds to query for and return a list of feed items
for the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as field
name or ID, comment ID, or other information.

C. Adding Information to Feed Tracked Update Tables

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations. In one implementa-
tion, some of the blocks may be performed regardless of
whether a specific event or part of an event (e.g., only one field
of an update is being tracked) is being tracked. In various
implementations, a processor or set of processors (hardwired
or programmed) can perform method 1000 and any other
method described herein.

In block 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.
For example, there may be a particular identifier for a field
update. In another implementation, the transaction may be
investigated for keywords identifying the event (e.g., terms in
a query indicating a close, change field, or create operations).

In block 1020, it is determined whether the event is being
tracked for inclusion into feed tracked update tables. The
determination of what is being tracked can be based on a
tenant’s configuration as described above. In one aspect, the
event has an actor (person performing an event), and an object
of the event (e.g., record or user profile being changed).

Inblock 1030, the event is written to an event history table
(e.g., table 910). In one implementation, this feed tracking
operation can be performed in the same transaction that per-
forms a save operation for updating a record. In another
implementation, a transaction includes at least two roundtrip
database operations, with one roundtrip being the database
save (write), and the second database operation being the
saving of the update in the feed tracked update table. In one
implementation, the event history table is chronological. In
another implementation, if user A posts on user B’s profile,
then user A is under the “created by 913 and user B is under
the object ID 912.

In block 1040, a field change table (e.g., field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one implemen-

10

15

20

25

30

35

40

45

50

55

60

65

36

tation, the field change table is a child table of the event
history table. This table can include information about each of
the fields that are changed. For example, for an event that
changes the name and balance for an account record, an entry
can have the event identifier, the old and new name, and the
old and new balance. Alternatively, each field change can be
in a different row with the same event identifier. The field
name or ID can also be included to determine which field the
values are associated.

In block 1050, when the event is a post, a post table (e.g.,
post table 950) can be updated with an entry having the event
identifier and text of the post. In one implementation, the field
change table is a child table of the event history table. In
another implementation, the text can be identified in the trans-
action (e.g., a query command), stripped out, and put into the
entry at the appropriate column. The various tables described
herein can be combined or separated in various ways. For
example, the post table and the field change table may be part
of the same table or distinct tables, or may include overlap-
ping portions of data.

In block 1060, a comment is received for an event and the
comment is added to a comment table (e.g., comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated for
display. In one implementation, the text can be identified in
the transaction (e.g., a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Tracked Update Tables

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations. In one
implementation, the feed item may be read as part of creating
a feed for a record.

In block 1110, a query is received for an events history
table (e.g., event history table 910) for events related to a
particular record. In one implementation, the query includes
an identifier of the record for which the feed is being
requested. In various implementations, the query may be
initiated from a detail page of the record, a home page of a
user requesting the record feed, or from a listing of different
records (e.g., obtained from a search or from browsing).

In block 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In one
implementation, a first table is checked to see if the user has
a classification (e.g., a security level that allows him to view
records of the given type). In another implementation, a sec-
ond table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one implementation can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one implementation, a security check is determined
upon each request to view the record feed. Thus, whether or
not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed. In
another implementation, a feed can be computed before being
requested and a subsequent security check can be made to
determine whether the person still has access right to view the
feed items. The security (access) check may be at the field
level, as well as at the record level.

US 9,177,007 B2

37

Inblock 1130, if the user can access the record, a field level
security table can be checked to determine whether the user
can see particular fields. In one implementation, only those
fields are displayed to the user. Alternatively, a subset of those
the user has access to is displayed. The field level security
check may optionally be performed at the same time and even
using the same operation as the record level check. In addi-
tion, the record type check may also be performed at this time.
If the user can only see certain fields, then any feed items
related to those fields (e.g., as determined from field change
table 920) can be removed from the feed being displayed.

In block 1140, the feed items that the user has access to are
displayed. In one implementation, a predetermined number
(e.g., 20) of feed items are displayed at a time. The method
can display the first 20 feed items that are found to be read-
able, and then determine others while the user is viewing the
first 20. In another implementation, the other feed items are
not determined until the user requests to see them, e.g., by
activating a see more link.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations. In one implemen-
tation, the query includes an identifier of the user profile feed
that is being requested. Certain blocks may be optional, as is
also true for other methods described herein. For example,
security checks may not be performed.

In block 1210, a query is directed to an event history table
(e.g., event history table 910) for events having a first user as
the actor of the event (e.g., creation of an account) or on which
the event occurred (e.g., a post to the user’s profile). In various
implementations, the query may be initiated by a second user
from the user’s profile page, a home page of a user requesting
the profile feed (e.g., from a list of users being followed), or
from a listing of different users (e.g., obtained from a search
or from browsing). Various mechanisms for determining
aspects of events and obtaining information from tables can
be the same across any of the methods described herein.

In block 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In one
implementation any user can see the profile of another user of
the same tenant, and block 1220 is optional.

In block 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
implementation, only the feed tracked updates related to
records that the person has updated are the ones that need
security check as the feed items about the user are readable by
any user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant level.
In another implementation, messages can be checked for
keywords or links to a record or field that the second user does
not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following blocks
illustrate one implementation of how security might be
checked for a first user that has a lot of feed items, but the
second user cannot see most of them. This implementation
can be used for all situations, but can be effective in the above
situation.

In block 1231, a predetermined number of entries are
retrieved from the event history table (e.g., starting from the

5

10

15

20

25

30

35

40

45

55

60

65

38

most recent, which may be determined from the event iden-
tifier). The retrieved entries may just be ones that match the
user 1D of the query. In one implementation, entries are
checked to find the entries that are associated with the user
and with a record (i.e. not just posts to the user account). In
another implementation, those entries associated with the
user are allowed to be viewed, e.g., because the second user
can see the profile of the first user as determined in block
1220.

In block 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see the
record types. Other checks such as whether a record was
manually shared (e.g., by the owner) can also be performed.
In one implementation, the queries for the different types can
be done in parallel.

Inblock 1233, if a user can see the record type, then a check
can be performed on the specific record. In one implementa-
tion, if a user can see a record type, then the user can see all of
the records of that type, and so this block can be skipped. In
another implementation, the sharing model can account for
whether a user below the second user (e.g., the second user is
amanager) can see the record. In such an implementation, the
second user may see such a record. In one implementation, if
a user cannot see a specific record, then comments on that
record are also not viewable.

In block 1234, field level sharing rules can be used to
determine whether the second user can see information about
an update or value of certain fields. In one implementation,
messages can be analyzed to determine if reference to a
particular field name is made. If so, then field level security
can be applied to the messages.

Inblock 1280, blocks 1231-1234 are repeated until a stop-
ping criterion is met. In one implementation, the stopping
criteria may be when a maximum number (e.g., 100) of
entries that are viewable have been identified. In another
implementation, the stopping criteria can be that a maximum
number (e.g., 500) of entries from the entity feed tracked
update table have been analyzed, regardless of whether the
entries are viewable or not.

In one implementation, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g., as
described above. In one implementation, a list of records and
user profiles for the queries in blocks 1110 and 1210 can be
obtained form user subscription table 940. In one implemen-
tation, there is a maximum number of objects that can be
followed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations. In various implementations, method 1300
can be performed each time an event is written to the event
history table, or periodically based on some other criteria
(e.g., every minute, after five updates have been made, etc.).

In block 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for block 1010. The event may be written to an
event history table (e.g., table 910).

In block 1320, the object(s) associated with the event are
identified. In various implementations, the object may be
identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a
message, and a user whose profile the message is being posted
to.

In block 1330, the users following the event are deter-
mined. In one implementation, one or more objects that are
associated with the event are used to determine the users

US 9,177,007 B2

39
following the event. In one implementation, a subscription
table (e.g., table 940) can be used to find the identified objects.
The entries of the identified objects can contain an identifier
(e.g., user ID 941) of each the users following the object

In block 1340, the event and the source of the event, e.g., a
record (for a record update) or a posting user (for a user-
generated post) are written to a news feed table along with an
event identifier. In one implementation, such information is
added as a separate entry into the news feed table along with
the event ID. In another implementation, each of the events
for a user is added as a new column for the row of the user. In
yet another implementation, more columns (e.g., columns
from the other tables) can be added.

News feed table 960 shows an example of such a table with
user ID 961 and event ID or pointer 962. The table can be
organized in any manner. One difference from event history
table 910 is that one event can have multiple entries (one for
each subscriber) in the news feed table 960. In one implemen-
tation, all of the entries for a same user are grouped together,
e.g., as shown. The user U819 is shown as following events
E37 and E90, and thus any of the individual feed items result-
ing from those events. In another implementation, any new
entries are added at the end of the table. Thus, all of the
followers for a new event can be added as a group. In such an
implementation, the event IDs would generally be grouped
together in the table. Of course, the table can be sorted in any
suitable manner.

In an implementation, if the number of users is small, then
the feed items in one or more of the tables may be written as
part of the same write transaction. In one implementation, the
determination of small depends on the number of updates
performed for the event (e.g., a maximum number of update
operations may be allowed), and if more operations are per-
formed, then the addition of the feed items is performed. In
one aspect, the number of operations can be counted by the
number of rows to be updated, including the rows of the
record (which depends on the update event), and the rows of
the feed tracked update tables, which can depend on the
number of followers. In another implementation, if the num-
ber of users is large, the rest of the feed items can be created
by batch. In one implementation, the feed items are written as
part of a different transaction, i.e., by batch job.

In one implementation, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting a
news feed. In one implementation, the event can be analyzed
and if access is not allowed to a feed item of the event, then an
entry is not added. In one aspect, multiple feed items for a
same user may not result from a same event (e.g., by how an
event is defined in table 910), and thus there is no concern
about a user missing a feed item that he/she should be able to
view.

In block 1350, a request for a news feed is received from a
user. In one implementation, the request is obtained when a
user navigates to the user’s home page. In another implemen-
tation, the user selects a table, link, or other page item that
causes the request to be sent.

In block 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.
The news feed can then be displayed. In one implementation,
the news feed table can then be joined with the event history
table to determine the feed items. For example, the news feed
table 960 can be searched for entries with a particular user ID.
These entries can be used to identify event entries in event
history table 910, and the proper information from any child

35

40

45

55

40

tables can be retrieved. The feed items (e.g., feed tracked
updates and messages) can then be generated for display.

In one implementation, the most recent feed items (e.g.,
100 most recent) are determined first. The other feed items
may then be determined in a batch process. Thus, the feed
item that a user is most likely to view can come up first, and
the user may not recognize that the other feed items are being
done in batch. In one implementation, the most recent feed
items can be gauged by the event identifiers. In another imple-
mentation, the feed items with a highest importance level can
be displayed first. The highest importance being determined
by one or more criteria, such as, who posted the feed item,
how recently, how related to other feed items, etc.

In one implementation where the user subscription table
940 is used to dynamically create a news feed, the query
would search the subscription table, and then use the object
IDs to search the event history table (one search for each
object the user is following). Thus, the query for the news feed
can be proportional to the number of objects that one was
subscribing to. The news feed table allows the intermediate
block of determining the object IDs to be done at an earlier
stage so that the relevant events are already known. Thus, the
determination of the feed is no longer proportional to the
number of object being followed.

In some implementations, a news feed table can include a
pointer (as opposed to an event identifier) to the event history
table for each event that is being followed by the user. In this
manner, the event entries can immediately be retrieved with-
out having to perform a search on the event history table.
Security checks can be made at this time, and the text for the
feed tracked updates can be generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one implementation, feeds can be scoped
to the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can vary
depending on which page it is being displayed (e.g., in news
feeds, on a detail page of a record, and even based on how the
user ended up at a particular page). In another implementa-
tion, only a finite number of feed items are displayed (e.g.,
50). In one implementation, there can be a limit specifically
on the number of feed tracked updates or messages displayed.
Alternatively, the limit can be applied to particular types of
feed tracked updates or messages. For example, only the most
recent changes (e.g., 5 most recent) for a field may be dis-
played. Also, the number of fields for which changes are
displayed can also be limited. Such limits can also be placed
on profile feeds and news feeds. In one implementation, feed
items may also be subject to certain filtering criteria before
being displayed, e.g., as described below.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
implementations, filters may be used to determine which feed
items are added to a feed or displayed in the feed.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations. Any of the following blocks can be performed
wholly or partially with the database system, and in particular
by one or more processor of the database system.

In block 1410, one or more criteria specifying which feed
items are to be displayed to a first user are received from a

US 9,177,007 B2

41

tenant. In one implementation, the criteria specify which
items to add to the custom feed. For example, the criteria
could specify to only include feed items for certain fields of a
record, messages including certain keywords, and other cri-
teria mentioned herein. In another implementation, the crite-
ria specify which items to remove from the custom feed. For
example, the criteria could specify not to include feed items
about certain fields or including certain keywords.

In block 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one implementation, the one or more
selected objects are the objects that the first user is following.
Inanother implementation, the one or more selected objects is
a single record whose record feed the first user is requesting.

In block 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identifi-
cation of the feed items (e.g., data for a field change) and
before the display of the final version of the feed item.

In one implementation, the criteria are received before a
feed item is created. In another implementation, the criteria
are received from the first user. In one aspect, the criteria may
only used for determining feeds to display to the first user. In
yet another implementation, the criteria are received from a
first tenant and apply to all of the users of the first tenant. Also,
in an implementation where a plurality of criteria are speci-
fied, the criteria may be satisfied for a feed item if one crite-
rion is satisfied.

Some implementations can provide mechanisms to search
for feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items
about or from a particular user. In one implementation, only
messages (or even just comments) from a particular user can
be selected. Besides searching for feed items that match cri-
teria, one also could search for a particular feed item.

XII. Interacting with Records Using a Publisher of an
Information Feed

FIG. 15 shows a flowchart of an example of a computer
implemented method 1500 to interact with records using a
publisher to publish information to an information feed of an
online social network, performed in accordance with some
implementations. In FIG. 15, in one example, an app server
288 in the on-demand service environment 200 of FIGS. 2A
and 2B includes one or more processors configured to per-
form part or all of method 1500. In other instances, one or
more other computing devices such as user systems 12 and/or
other servers retrieve, process, and exchange data to cooper-
ate with app server 288 to perform the method. User input
data can be received by a server over a data network from a
user operating a user system 12 as shown in FIGS. 1A and 1B.
In other instances, such data is received from a proxy server
on behalf of a user or other data source. Various implemen-
tations of method 1500 are possible, such that any of the
servers described above with reference to FIG. 2B or other
computing devices disclosed herein can be configured to
receive and process data and information in accordance with
method 1500 or any of the other methods described below.

At block 1502, a computing device receives a request to
interact with a child record related to a parent record stored in
a database system. Here, the child-parent relationship refers
to a hierarchical relationship among records in a database
system. For example, a task relating to an opportunity can be
a child, while the opportunity is the parent. In another
example, a deal related to an account is a child, and the
account is the parent.

20

25

40

45

55

42

In some implementations, the request at block 1502 may be
received from an entity, such as a user who has a user profile
in the online social network, via the user’s smartphone, tablet,
or other mobile computing device. In other instances, the
request may be received from a group, an organization or a
record in the online social network.

In some implementations, the request to interact with the
child record may be a request to create the record, a request to
update the record, a request to delete the record, a request to
attach a file to the record, a request to view information
associated with the record, a request to draft an email having
a reference to the record, a request to log a call, a request to
create an event, a request to write a note, or a combination
thereof.

In some implementations, a request to interact with a child
record may be generated in response to a user selecting a
button or a link in a user interface. For example, a user while
viewing an account page may select a graphical button to
create an opportunity related to the account. Inresponse to the
selection of the graphical button, a request to create the oppor-
tunity record is generated.

In some implementations, a request to interact with a child
record may be generated in response to a detection of a
command or a keyword entered in a publisher. For example,
the detection of “#create Account” or “#updateTask™ in a pub-
lisher may result in the generation of a request to create an
account and/or update a task, respectively. In some instances,
the one or more computing devices performing method 1500
may detect certain keywords in a publisher that are associated
with interacting with a record. For example, a user may enter
“50,000 Cases for ABC Stores for $40,000” into a publisher.
In this example, the one or more computing devices may be
configured to determine a correlation of certain words and the
creation of a record. Here, the combination of the keywords
“Cases,” “ABC Stores” and “$,” may trigger one or more
computing devices described herein to generate a request to
create an opportunity.

At block 1504, child record information indicating a type
of child record and field data to populate one or more fields of
the child record in the database system is received. In some
implementations, the child record information may be
included with the request received at block 1502. In some
implementations, child record information may be received
in response to a user completing and submitting a form with
the information. For example, based on the interaction
requested at block 1502, a pre-defined form with drop-down
menus and text boxes may be generated in a publisher to
request the child record information from the user.

In some implementations, the information received to
interact with a child record may indicate a type of child record
related to the parent record. For instance, the type of child
record may be a lead, a case, an account, an opportunity, a
task, a contact, or a combination of types. Based on the type
of the child record, a custom program can be executed to
allow a user to interact with the child record. In other
instances, user input may be requested to interact with the
child record based on the type of the child record.

In some implementations, the child record information
may include field data to populate fields of the child record in
a database system. For instance, based on the type of child
record, certain fields may be populated in a database system
to facilitate interaction with the record. For example, an event
record may include field data, such as the date and time of the
event, the names of invitees, and the venue. In another
example, a task record may include field data, such as the
name of a task, name or names of the assignee to the task, and
a due date. In some implementations, the information to

US 9,177,007 B2

43

populate one or more fields of the child record in a database
system may be determined in part by a system administrator.
For instance, some fields of the child record may be populated
with default values, or some fields may only be populated
with values designated by a system administrator in accor-
dance with a security clearance/permissions model.

In some implementations, the information received to
interact with the child record may further include message
content. The message content may be generated via a pub-
lisher of an information feed. For instance, the message may
be apost, a status update, a comment, a preference indication,
and/or some other type of user-submitted data that can be
published as a feed item in an information feed. For example,
a user may request to create a contact in a database system.
The user may provide specific information about the contact,
such as the name of the contact, phone number, email, title in
an organization, and the organization name. Further, the user
may include a message, such as a comment, describing why
the contact is useful and significant. In this way, a user may
use a publisher displayed on a display device to simulta-
neously create a contact record as well as generate a com-
ment, thereby allowing a user to use a single interface com-
ponent to interact with records in a database system as well as
communicate and collaborate with other users in an online
social network.

In some implementations, the child record information
may also include record relationship information indicating a
relationship of a child record with records stored in the data-
base system. For instance, the record relationship information
may include indicate that a child record is related to one
parent record or to multiple parent records. For example,
record relationship information may indicate that a deal
record is related to multiple account records in a database
system. In some instances, the record relationship informa-
tion may indicate that the child record is a parent record to
further child records.

At block 1506, using the child record information, the
requested interaction with the child record is performed. For
instance, if at block 1502 a request to create a child record is
received, then one or more computing devices described
herein may execute operations to create a row representing
the child record in a database system. Further, the computing
devices may perform operations to populate fields with the
child record information received at block 1504, and auto-
matically populate other fields with default data, such as an
1D for the child record.

In other instances, if a request to delete a child record is
received, then the one or more computing devices performing
method 1500 may execute operations to remove a row from
the database system corresponding to the child record. Alter-
natively, instead of deleting the child record, the computing
devices may execute operations that simply update a status of
the child record, for instance, from “Active” to “Inactive,” and
archive the child record in the database system.

Based on the request received at block 1502 and the child
record information received at block 1504, the computing
devices may be configured to maintain and automatically
execute default code to perform the requested interaction. In
other instances, a user may provide or select a script contain-
ing programming language instructions to perform the
requested interactions.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 to interact with records using a
publisher to publish information to an information feed of an
online social network, performed in accordance with some
implementations. FIG. 16 is described with reference to
FIGS. 18-27.

25

40

45

50

44

At block 1602, a request to interact with a child record
related to a parent record stored in a database system is
received at a computing device or computing devices config-
ured to perform method 1600, as generally described above at
block 1502 of method 1500.

For instance, a request to interact with a child record may
be generated in response to a user selecting a button, a link or
amenu selection in a user interface. By way of example, FIG.
18 shows an example of a group page 1800 in the form a
graphical user interface (GUI) as displayed on a display
device, according to some implementations. The group page
1800 includes GUI buttons 1802-1810 to allow a user to make
arequest to interact with a child record. In this example, a user
may select one of the GUT buttons to request to create a status
update 1802, create a task 1804, attach a file 1806, create a
contact 1808, or create an opportunity 1810.

In another example, FIG. 19 shows an example of a group
page 1900 in the form of a GUI as displayed on a display
device, according to some implementations. Here, feed item
1902 indicating that Clare McGrady has shared a contact,
Heidi Stevens, as indicated by contact record information
1906. In this example, a user can interact with the Heidi
Stevens contact record by making a selection from a menu
1908 in the feed item 1902. The user can select to add a task
to the record, log a call or send an email in this example.

Returning to FIG. 16, at block 1604, it is determined
whether an entity, such a user, a group or an organization that
made the request received at block 1602, is a collaborator of
the parent record.

In some implementations, an entity may be a collaborator
of'a parent record if the entity has permission to update data
associated with the parent record and to create records related
to the parent record. Conventionally, CRM systems limit the
interaction with records to system administrators or owners of
the records. As such, other users or groups cannot directly
interact with the record without the assistance of an owner or
of system administrator. In contrast, by determining whether
an entity is a collaborator, the number of entities that can
interact with a record is increased, thereby allowing for
greater collaboration and greater exchange of information
related to a record. Additionally, by limiting interactions of
records to only entities that have certain permissions, the
amount of interaction can be controlled among different col-
laborators in compliance with security/permission models.
As such, a collaborator can use a publisher of an online social
network to interact with records, while maintaining a certain
security level and without the assistance of a system admin-
istrator or a record owner.

In some implementations, a collaborator may be a user, a
group, arecord or an organization in an online social network.
In some implementations, a collaborator of the parent record
may be an owner of the parent record. Alternatively, or addi-
tionally, a collaborator of a parent record may be an entity
other than an owner of the parent record.

In some implementations, the computing devices
described herein may perform operations to query a database
to determine whether an entity is a collaborator. For instance,
an entity may be determined to be a collaborator based on the
entity’s profile information. For example, a user’s profile
information may specify which accounts, deals, opportuni-
ties and/or cases the user is responsible for. In some instances,
auser’s group membership may be used to deduce whether a
user is a collaborator of a record. In this example, if user, John
Soliman, is a member of the APAC team, then it is determined
that John Soliman is a collaborator on the same records as the
APAC team.

US 9,177,007 B2

45

In some implementations, if it is determined that an entity
is a collaborator, permissions associated with the entity may
be further determined. A collaborator’s permissions may
specify the type of information associated with a parent
record that a collaborator may access. For example, a collabo-
rator on a K-Kola account may have permission to view,
update and create opportunities, tasks and contacts related to
the K-Kola account, while another collaborator may only
have permissions to view and update cases and opportunities.
In another example, a collaborator’s permissions may be
based on the collaborator’s role in an organizational hierar-
chy. In this example, if it is determined that a collaborator is
a Director or Vice President of the Sales Team, then he can
access and interact with public and private information asso-
ciated with an account. However, if a collaborator is a Man-
ager or a Sales Associate, then he may only have access to
publicly available information associated with the account.

In some implementations, an entity may be identified as a
collaborator, and permissions of the collaborator may be
determined by a system administrator and/or owner of the
parent record. In other implementations, it may be deter-
mined that an entity is a collaborator based on identifying
certain patterns and examining an entity’s historical data that
indicate that the entity is often associated with certain records
in a database system. In yet other implementations, the deter-
mination of a collaborator or permissions of a collaborator
may be dictated by an organization’s security policy.

In some implementations, if it is determined that an entity
is not a collaborator of the parent record, then method 1600
may end. Otherwise, method 1600 proceeds to block 1606. At
block 1606, publisher data is sent to a display device at which
the publisher is displayed. In some implementations, the pub-
lisher is displayed on a display device associated with an
entity that made the request received at block 1602.

In some implementations, the publisher data may include
operations to generate display components, such as a form,
graphical buttons, drop-down menus, and textboxes to
include in a publisher displayed on an entity’s display device,
such as mobile phone, to allow the entity to input information
related to a child record. The publisher data may further
include operations to identify text, images and to retrieve
other stylistic information to create display components in a
publisher. In some instances, the publisher data may further
include operations to retrieve field data of a child record from
a database to populate and display it in a form included in a
publisher.

In some implementations, the publisher data that is sent to
a display device is based on the request received at block
1602. By way of example, FIG. 18 shows an example of
publisher data used to generate a form in a publisher 1812 to
allow a user to input information to create a contact to the
group identified by page 1800. In this example, if a request to
create a contact record is received, then the publisher 1812
includes a text box 1814 to include a message. The publisher
further includes text boxes to allow the user to enter a con-
tact’s name 1816, the contact’s title in a company 1818,
company name 1820, phone number 1822, and email address
1824. The publisher further allows the userto upload a picture
of the contact. In some instances, the picture may be auto-
populated from a database after the user inputs the contact’s
name in the textbox 1816. The publisher 1812 further
includes a dropdown menu 1828 to allow the user to select
entities with which the user wishes to share the new contact’s
information when the user selects the share button 1830.

When the user clicks on the share button 1830, then the
message 1814 and the contact record information (1816-
1824) are communicated to one or more computing devices

20

30

40

45

55

46

performing method 1600, for instance, as a signal over net-
work 14 in FIGS. 1A and 1B, and stored in a database as a
record related to the APAC Team group record. Further, the
message and record information may be included in a feed
item for presentation in an information feed of followers of
the user who created the contact record and/or followers of
the APAC Team.

In another example, FIG. 20 shows an example of an
account page 2000 in the form of a GUI as displayed on a
display device, according to some implementations. In FIG.
20, ifarequest to create a deal is received, then publisher 2004
includes a form to create a deal associated with account ABC
Stores. In this example, publisher data is used to generate a
text box 2006 to use to include a message, such as a comment
or a status update. The publisher data further includes data to
generate text boxes to allow a user to enter the name of the
deal 2008, and the monetary amount 2010. The publisher data
may further include a searchable textbox 2012 such that the
user can indicate which accounts the deal is related to, and
include operations to generate a calendar to allow the user to
select a closing date 2014. Similar to FIG. 18, publisher 2004
may include a drop-down menu 2016 to allow a user to select
recipients with whom to share the new deal information when
the user selects a share button 2018.

In some implementations, when the user clicks on the share
button 2018, then the message 2006 and the deal record
information (2006-2014) are communicated to one or more
computing devices performing method 1600, for instance, as
a signal over network 14 in FIGS. 1A and 1B, and stored in a
database as a record related to the ABC Stores account record.
Further, the message and record information may be included
in a feed item for presentation in an information feed of
followers of the user who created the deal record and/or
followers of the account.

Inyetanother example, FIG. 21 shows an example of'a deal
page 2100 in the form of a GUI as displayed on a display
device, according to some implementations. In FIG. 21, if a
request to create a task is received, then publisher 2102
includes a form to allow a user to create and assign a task
related to deal A-5000 Cases 2104. Here, the publisher
includes display components that allow a user to provide a
description of the task 2106, assign the task 2108 to users,
groups or organizations, and select a due date 2110. Further,
the publisher includes display components 2112 and 2114 to
allow a user to select recipients with whom to share the newly
created task information. In some implementations, when the
task is created and stored as a child record of deal 2104, it may
trigger a feed tracked updated that results in a feed item
including task information (2108-2110) and message content
2106 to be displayed in an information feed associated with
the deal A-5000 Cases 2104.

In another example, FIG. 22 shows an example of a case
page 2200 in the form of a GUI as displayed on a display
device, according to some implementations. In this example,
a post from Clare McGrady for case 2204 is received. Here,
using the publisher 2208, a user can compose an email to
reply to the post by utilizing a form provided in the publisher
2208. For instance, the user can select recipients 2210 of the
email, include email content in a textbox 2212 and select a
send email button 2214 to send the email. In this example,
when an email is sent via the publisher 2208, then the email
may be stored in a database as a child record of case 2204.

In yet another example, FIG. 23 shows an example of a
group page 2300 in the form of a GUI as displayed on a
display device, according to some implementations. In FIG.
23, when a request to create an event is received, publisher
2302 includes a form to create an event indicating the user’s

US 9,177,007 B2

47

time off. The user can include a message 2304 that describes
where she is going during her time off, select dates 2306 for
her event, and select a share button 2308 to share her event
with her colleagues.

Although FIGS. 18 and 20-23 illustrate examples of dif-
ferent types of forms in a publisher to create different types of
records, the publisher data is not limited to display compo-
nents for creating records. For instance, publisher data may
generate a form to update or delete a record. For example,
when a request to update information of a contact, Tanya
Brooke, is received, a publisher may include a form similar to
the form of publisher 1812 of FIG. 18. In this example, the
computing device may perform a database query and auto-
populate the form in the publisher with Tanya Brooke’s con-
tact information. When a user updates Tanya’s email address,
then Tanya Brooke’s contact is updated with the new email
address. In other instances, the publisher data may generate
display components in a publisher to enable a user to attach
files, images, and/or links to a record.

In some implementations, the publisher data may include
operations and data to generate default display components
that are set by a user or an administrator of the database
system. In other implementations, the publisher data may be
generated in accordance with code stored and executed on
one or more servers described herein.

Returning to FIG. 16, at block 1608, child record informa-
tion indicating a type of child record and field data to populate
one or more fields of the child record in the database system
is received, as generally described above at block 1504 of
method 1500. By way of example, FIG. 24 shows an example
of a group page 2400 in the form a GUI as displayed on a
display device, according to some implementations. In FIG.
24, a publisher 2402 includes a form to create a contact
similar to the publisher 1812 described with respect to FIG.
18. Here, a user, Clare McGrady, provided contact informa-
tion about Heidi Stevens, such as her name 2404, her role
2406 within the ABC Stores 2408 organization, her phone
number 2410, her email address 2412, and a picture of Heidi
2414. Once Clare selects the share button 2416, a new contact
record related to the APAC Team record is created in a data-
base by populating fields of the contact record with contact
information (2404-2414).

Further, in this example, using the publisher 2402, Clare
included a message 2418 describing why Heidi is a good
contactand ABC Stores’s future plans to expand in Korea and
Singapore. When Clare selects to share 2416 Heidi’s contact
information, then the message may be included in a feed item
for presentation in an information feed of users following the
APAC Team. Alternatively, the message and the contact infor-
mation may be presented in feed items to users, groups and
organizations designated by Clare. By way of example, FIG.
25 shows an example of a group page 2500 in the form a GUI
as displayed on a display device, according to some imple-
mentations. FIG. 25 shows a feed item 2502 published in the
group feed 2504 displayed in the group page 2500. In this
example, feed item 2502 includes the content of the message
and the contact information provided in the publisher 2402 of
FIG. 24. As FIGS. 24 and 25 illustrate, the user interfaces of
pages 2400 and 2500 allow a user to interact with records
using the publisher while maintaining a comprehensive view
of relevant structured information, such as child records of a
parent record, and unstructured information, such as com-
ments, posts, emails and other user-submitted data by utiliz-
ing a single user interface.

In another example, FIG. 26 shows an example of an
account page 2600 in the form of a GUI as displayed on a
display device, according to some implementations. In FIG.

25

30

35

40

45

48

26, a publisher 2602 includes a form to create a deal associ-
ated with the account ABC Stores similar to publisher 2004 of
FIG. 20. Here a user, Madison Rigsby, provides information
about the deal, such as the name of the deal 2604, an account
related to the deal 2606, the value of the deal 2608, and the
closing date 2610. When Madison shares the deal, it causes
one or more computing devices described herein to create a
deal record related to the ABC Stores account in a database
system and populate fields of the deal record with the deal
information 2604-2610. Although FIG. 26 shows that the deal
is only related to the ABC Stores account, in some implemen-
tations, Madison can designate that the deal is a child record
to additional parent records. Alternatively or additionally,
Madison may designate child records to the deal itself, or
designate various other combinations of parent-child record
relationships.

In FIG. 26, Madison includes a message 2614 about the
case, “We’re going to start small to test out the product on the
big island with the plan of extending distribution state wide
within 3 months.”” Once Madison shares the new deal, the
message 2614 may be included in a feed item for presentation
in an information feed of followers of the account ABC
Stores. For example, FIG. 27 shows an example of an account
page 2700 in the form of a GUI as displayed on a display
device, according to some implementations. FIG. 27 shows a
feed item 2702 published in the account feed 2704 displayed
in the account page 2700. In this example, feed item 2702
includes the message content and the deal information pro-
vided in the publisher 2602 of FIG. 26. As FIGS. 26 and 27
illustrate, a user can use a publisher of FIGS. 26 and 27 to
interact with a record as well as communicate messages to
collaborate with other users using a single user interface.
Further, the user interfaces of pages 2600 and 2700 allow a
user to view and maintain all of the relevant information of the
deal in a single user interface, thereby eliminating the need to
switch among different applications to obtain a holistic view
of a record.

Returning to FIG. 16, at block 1610, the requested interac-
tion with the child record is performed using the child record
information received at block 1608. In some implementa-
tions, block 1610 is implemented in a substantially similar
manner as described above with respect to block 1506 of F1G.
15.

At block 1612, feed data is sent to display devices of users
following the entity. In some implementations, the feed data
may include the child record information and message con-
tent received at block 1608. FIGS. 25 and 27 illustrate
examples of feed items 2502 and 2702 that may be generated
to include in an information feed.

In some implementations, the feed data may provide fur-
ther operations to generate display components to allow a
user to perform further actions. For instance, a feed item may
include a menu, links, graphical buttons to create a task,
update a task, create an opportunity, update an opportunity,
create a contact, update a contact, create a case, update a case,
create an account, update an account, create an event, and
update an event related to a record. In some instances, feed
data may include operations to generate graphical buttons
that allow a user to publish a feed item to other online social
networks, log a call, create an email, indicate a preference or
make a comment.

By way of example, one or more computing devices per-
forming method 1600 can send feed data to generate feed
items, such as information update 1902 ot FI1G. 19, for inclu-
sion in the group information feed 1910. Here, feed item 1902
includes contact record information 1906 as described above.
Additionally, the feed item includes graphical buttons 1912

US 9,177,007 B2

49

and 1914 to allow a user to communicate the contact record
information 1906 to other online social networks, such as
LinkedIn® and Twitter®. The feed item includes a publisher
1916 associated with contact record information 1906 to
allow a user to comment on the information 1906. Also, a user
can indicate a preference for information 1906 by selecting a
“Like” link 1918.

In some implementations, the feed data may further pro-
vide operations to identify and retrieve data associated with
the feed item, formulate or retrieve stylistic information for
creating the feed item, and combine the identified and
retrieved data to provide feed data to generate a feed item or
feed items for presentation in an information feed.

In some implementations, the feed data provided to the
display devices of users following a user or record is trans-
mitted from a server such as app server 288 over network 14
to a user system 12 of FIGS. 1A and 1B. In this example, the
display device is one component of the user system 12, which
includes a processor configured to execute a web browser
program to output a graphical presentation of the feed item
and information feed on the display device, for instance, in a
GUI. In other examples, the feed data provided to the display
device at block 1612 is generated locally at user system 12.
By the same token, one or more of the blocks 1602-1612 as
described above can also be performed at user system 12 as an
alternative to being performed at one or more servers in an
online social network. The same is true for method 1500 and
other examples of methods described herein.

While the examples of FIGS. 18-27 are often described in
terms of a user inputting data, part or all of the data described
can be system-generated in other examples. For instance, a
server can be configured to retrieve record information from
a database and auto-populate publishers with record informa-
tion. Further, as patterns are identified, such as the frequent
and repeated mention of certain keywords among identifiable
users, the server can be configured to automatically interact
with records in accordance with those keywords or other data
representing the identified patterns.

FIG. 17 shows a flowchart of an example of a computer
implemented method 1700 for presenting a record in an infor-
mation feed of an online social network, performed in accor-
dance with some implementations.

At block 1702, a request to present an information feed
associated with a parent record is received at a computing
device. In some implementations, the request may be for a
profile feed, an account feed, an opportunity feed, a lead feed,
a contact feed, a task feed, or any other feed associated with a
CRM object.

In some implementations, the request may be received as
part of a request for a web page or user interface component
that contains the feed. For example, a user system may trans-
mit a request for a web page to one or more servers described
herein. As part of providing the requested web page, the
server may initiate the request for the information feed asso-
ciated with the parent record.

At block 1704, one or more child records related to the
parent record are identified. In some implementations, one or
more child records related to the parent record are identified
based on the request received at block 1702. For example, the
request may include child record identifiers. In some imple-
mentations, the one or more child records related to the parent
record may be identified by performing a database query
using an identifier associated with the parent record, and the
query may return a list of child record identifiers.

At block 1706, an unprocessed child record of the identi-
fied one or more child records is selected. In some implemen-

5

15

20

25

30

35

40

45

50

55

60

65

50

tations, the unprocessed child record may be selected from
the child record identifiers mentioned above.

At block 1708, it is determined whether information
related to the unprocessed child record has been updated. In
some implementations, the determination may be made in
response to receiving a request. For example, a user’s device
may poll for an updated child record. As such, a request may
be generated and transmitted to one or more servers to deter-
mine whether a child record has been updated. The request
may be transmitted periodically, based on a user’s input, or
based on some predetermined schedule.

In some implementations, this determination may be made
independent of receiving a request. For instance, the determi-
nation may be made by one or more servers that perform a
database query using a child record identifier retrieved at
block 1704 for an unprocessed child record. For example, one
or more servers may perform a database query when a trigger
condition associated with a child record is detected. The
trigger condition may be a creation of a new record related to
the child record, a change in a value of a field associated with
the child record, a change to a time stamp associated with the
child record, a change in a value in a feed table, or some
combination thereof. In some other instances, one or more
servers may be configured to periodically or according to
some other schedule query databases and feed tables for
updated records.

In some implementations, the determination at block 1708
may be based on whether information associated with the
child record meets or exceeds a designated threshold level.
For example, if a status of an opportunity is updated from
“Inactive” to “Active,” then the opportunity may be identified
as being updated. However, if the status of the opportunity
changes from “Closed” to “Inactive,” the opportunity may not
be identified as being updated. In another example, the des-
ignated threshold may be a specific delta of change of a value
of'a field of a child record. For example, if the sale value of a
case changes by 10%, the case is identified as being updated.
Alternatively, the designated threshold may be a value range.
For example, if the sale value of the case changes by 10-20%,
then the case is determined to be updated. However, if the
change in the sale value is less than 10%, then the case is not
determined to be updated.

In other instances, the designated threshold level may be a
number of updates to the child record. In yet some other
instances, the designated threshold may be a timeframe. For
example, the timeframe may identify changes that occurred in
the last year, month, hour or minute.

In some implementations, if it is determined that the
unprocessed child record has not been updated, then method
1700 may end. Alternatively, if it is determined that the
unprocessed child record has been updated, then method
1700 may proceed to block 1710. At block 1710, information
related to the unprocessed child record is selected for inclu-
sion in a feed item. In some implementations, once it is
determined that the unprocessed child record is updated at
block 1708, a database query may be performed to select all
available information associated with the child record for
inclusion in a feed item.

In some implementations, atblock 1710, the information is
selected in accordance with one or more factors. For instance,
the selection at block 1710 may be based on permissions or a
security model designated by a system administrator or an
organization. For example, information associated with a
child record may be designated as public or private. In an
illustrative example, public information of a new deal, Coffee
Deal, may include the monetary value of the deal, the number
of'units of coffee included in the order, the closing date of the

US 9,177,007 B2

51

deal, the name of the account, Coffee Hut, related to the deal,
and comments made about the deal. As such, in this example,
the information that is designated as public information is
selected for inclusion in a feed item. However, information
such as, contracts, files, non-disclosure statements, are pri-
vate and are not selected for inclusion in a feed item.

In some instances, the information selected for inclusion in
an information feed is based on permissions associated with
the entity. For example, if a user is identified as a collaborator
of'a child record, then the user may have access to public and
private information of the child record. However, a user that is
only designated as a follower of the child record may only
have access to view public information. In some instances,
the permissions and clearance of an entity may be determined
by user input, a system administrator, or an organization’s
clearance and security policies.

In yet some other instances, the selection of information
may be based on the role of an entity in an organization. For
example with reference to the Coffee Hut example discussed
above, a user, Jason Winters, is a sales associate who accesses
the Coffee Hut account. In this example, because Jason is a
sales associate, the information selected for presentation may
identify deals, tasks, contacts, comments, emails, and prefer-
ence indications associated with the Coffee Hut account. In
contrast, when Luke Ball, the vice president of Sales,
accesses the Coftee Hut account, the selection may include
information selected for Jason as well as other information
such as contracts and files associated with various deals and
opportunities related to the Coffee Hut account.

In some implementations, the selection of information may
be made independent of permissions or a role of an entity. In
some implementations, data of fields of a record that are
designated as key fields may be selected. For example, for a
contact record, the name of the contact and the phone number
may be designated as key fields and selected for inclusion in
a feed item. In another example, an assignee name and due
date of a task record may be designated as key fields for a task
record, and thus, always selected for inclusion in a feed item.

In some implementations, a value of a field of a record may
be selected if the value meets or exceeds certain designated
threshold levels. In some instances, the designated threshold
levels may be similar to the designated threshold levels dis-
cussed above with reference to block 1708. For example, if a
sale value of a case changes by 10%, then the previous and
current sale values associated with the case may be selected
for inclusion in a feed item.

In some implementations, information associated with the
unprocessed child record may be selected upon receipt of an
indication that an update to the record was performed by a
designated entity. In some instances, the designated entity
may be a specific user, a group, or an organization. In other
instances, the designated entity may be an entity that has a
specific role in an organizational hierarchy. For example, if
Tan Swinson, a Director of Global Marketing at K-Kola,
updates a closing date for a case, then the updated closing date
is included in a feed item to allow Ian’s followers and/or team
members to be notified of the change. In contrast, if Craig
Villamor, an associate of Global Marketing, updates a closing
date for a case, then the update may not be selected for
inclusion in a feed item because Craig has a lower role than
Tan. In other implementations, information may be selected if
an update of a record is performed by an employee who is an
Associate or a Product Manager in an organization, but not a
Director.

In some implementations, the selection of information may
be based on a timeframe that the information of a record was
updated. For example, the timeframe may be a designated

25

30

40

45

52

year, month, day, hour or some other time range. If a value of
a field of the unprocessed child record has changed with the
designated timeframe, then the value is selected for inclusion
in a feed item.

In some implementations, the selection of information may
be based on whether the child record received a designated
number of “likes” or a number of comments. In other imple-
mentations, likes or comments associated with the child
record may be selected regardless of the quantity of “likes™ or
“comments” received.

At block 1712, it is determined whether any unprocessed
child records of the identified one or more child records
remain. The determination made at 1712 may involve deter-
mining whether each child record identifier received at block
1704 has been processed.

If it is determined that unprocessed child records remain,
then method 1700 returns back to block 1706. Otherwise,
method 1700 continues to block 1714.

At block 1714, feed data that includes the selected infor-
mation related to the identified one or more child records is
generated. In some implementations, the feed data at block
1714 may be substantially similarto the feed data described in
block 1612 of FIG. 16. In some implementations, the feed
data includes the information selected at block 1712 for inclu-
sion in a single feed item. This way the information may be
clumped into a single feed item to minimize the number of
feed items published in an information feed. In other imple-
mentations, the feed data may include data to generate a feed
item for selected information of each of the identified one or
more child records.

Atblock 1716, the feed data is stored in one or more storage
mediums to generate feed items for presentation in the infor-
mation feed. In some implementations, the feed data may be
stored by a server for inclusion in an information feed at a
user’s device. For instance, the feed data may be stored in a
database, such as a multitenant database accessible to a plu-
rality of tenants and/or stored in RAM or a hard drive situated
at the user’s device.

In some implementations, rather than storing the feed data
at block 1716, the feed items may be immediately communi-
cated and presented in an information feed displayed on a
user’s device in a substantially similar manner as described
above with reference to block 1612 of FIG. 16.

The specific details of the specific aspects of implementa-
tions disclosed herein may be combined in any suitable man-
ner without departing from the spirit and scope of the dis-
closed implementations. However, other implementations
may be directed to specific implementations relating to each
individual aspect, or specific combinations of these indi-
vidual aspects.

While the disclosed examples are often described herein
with reference to an implementation in which an on-demand
database service environment is implemented in a system
having an application server providing a front end for an
on-demand database service capable of supporting multiple
tenants, the present implementations are not limited to multi-
tenant databases nor deployment on application servers.
Implementations may be practiced using other database
architectures, i.e., ORACLE®, DB2® by IBM and the like
without departing from the scope of the implementations
claimed.

It should be understood that some of the disclosed imple-
mentations can be embodied in the form of control logic using
hardware and/or using computer software in a modular or
integrated manner. Other ways and/or methods are possible
using hardware and a combination of hardware and software.

US 9,177,007 B2

53

Any of'the software components or functions described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer-readable medium for storage and/
or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital versa-
tile disk), flash memory, and the like. The computer-readable
medium may be any combination of such storage or trans-
mission devices. Computer-readable media encoded with the
software/program code may be packaged with a compatible
device or provided separately from other devices (e.g., via
Internet download). Any such computer-readable medium
may reside on or within a single computing device or an entire
computer system, and may be among other computer-read-
able media within a system or network. A computer system,
or other computing device, may include a monitor, printer, or
other suitable display for providing any of the results men-
tioned herein to a user.

While various implementations have been described
herein, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-sub-
mitted claims and their equivalents.

What is claimed is:

1. A computer implemented method to interact with data-
base records using a publisher component of a user interface
configured to present a feed associated with an entity of an
enterprise social network implemented using a database sys-
tem, the user interface being displayable on a display device
of a user, the publisher component configured to publish
information to one or more feeds of the enterprise social
network, the method comprising:

receiving a request to interact with a child record related to

a parent record stored in a customer relationship man-
agement (CRM) database of the database system, the
request to interact with the child record having been
generated via the publisher component of the user inter-
face when displayed on a display device;

receiving child record information indicating a CRM type

of the child record;

receiving data to store in association with the child record

in the CRM database of the database system, the data
being specific to the CRM type of the child record, the
data being differentiated from social media message
content capable of being generated via the publisher
component to publish to one or more feeds of the enter-
prise social network accessible by one or more users
following the parent record and/or following the child
record in the enterprise social network, the data having
been provided via at least one user interactable element
of'the publisher component configured to expose at least
one field of the child record particular to the CRM type
of the child record, the at least one user interactable
element further configured to cause data to be provided
to the CRM database for updating the at least one field of
the child record; and

causing to be performed, using the database system, the

requested interaction with the child record using the
child record information.

5

10

15

20

25

30

35

40

45

50

55

60

65

54

2. The method recited in claim 1, wherein the request to
interact with the child record is one of: a request to create the
child record, a request to update the child record, a request to
delete the child record, a request to attach a file to the child
record, and a request to view information associated with the
child record.

3. The method recited in claim 1, wherein at least a portion
of'the child record information is generated via the publisher
component.

4. The method recited in claim 1, further comprising:

determining that the entity is a collaborator of the parent

record, the collaborator having permission to update the
parent record and to create records related to the parent
record.

5. The method recited in claim 4, wherein the collaborator
of the parent record is different from an owner of the parent
record.

6. The method recited in claim 4, wherein the collaborator
of the parent record is an owner of the parent record.

7. The method recited in claim 4, wherein the collaborator
is one of: a user, a group, a record and an organization of the
enterprise social network.

8. The method recited in claim 1, further comprising:

sending feed data to the display devices of the users fol-

lowing the entity, the feed data including a feed item to
be presented in the one or more feeds of the enterprise
social network, the feed item including the child record
information and the message content.

9. The method recited in claim 1, the parent record and/or
the child record being a customer relationship management
(CRM) object being one of: a lead, a case, an account, an
opportunity, a task and a contact.

10. The method recited in claim 1, wherein the type of the
child record indicates that the child record is one of: a lead, a
case, an account, an opportunity, a task and a contact.

11. The method recited in claim 1, further comprising:

sending publisher component data, based on the request to

interact with the child record, to the display device at
which the publisher component is displayed, the pub-
lisher component data providing one or more compo-
nents operable to receive user input indicating at least a
portion of the child record information.

12. The method recited in claim 1, wherein the child record
information further includes record relationship information
indicating a further relationship of the child record with a
further record stored in the database system.

13. The method recited in claim 1, further comprising:

identifying a further child record related to the parent

record;

determining that information related to the further child

record has been updated;
selecting, in accordance with one or more factors, infor-
mation related to the further child record for inclusion in
a further feed item;

generating the further feed item data that includes the
selected information to generate the further feed item for
presentation in the one or more feeds of the enterprise
social network displayed on display devices of one or
more users following the parent record in the enterprise
social network; and

storing the further feed item data in one or more storage

mediums to generate the further feed item for presenta-
tion in the one or more feeds of the enterprise social
network.

14. The method recited in claim 13, wherein the one or
more factors include one or more of: access permissions of
the entity, a role of the entity, a field of the further child record,

US 9,177,007 B2

55

an indication that an update to the further child record was
performed by a designated entity, and a timeframe.

15. The method recited in claim 13, wherein determining
that the information associated with the further child record
has been updated includes:

determining that the associated information meets or

exceeds a designated threshold level.

16. The method recited in claim 15, wherein the designated
threshold level is one of: a number of updates to the further
child record, a timeframe of the update, and a designated
change in a value of a field of the further child record.

17. The method recited in claim 13, wherein the selected
information includes one or more of: a number of likes asso-
ciated with the further child record, comments associated
with the further child record, and a further field data of a field
of the further child record.

18. The method recited in claim 13, wherein generating the
further feed item data further includes:

determining one or more actions that are selectable by the

entity; and

generating action data to display at the display device, the

action data providing one or more components operable
to receive a selection from the entity of the one or more
actions.

19. The method recited in claim 18, wherein the one or
more actions include one or more of: create a task, update a
task, create an opportunity, update an opportunity, create a
contact, update a contact, create a case, update a case, create
an account, update an account, create an event, update an
event, publish to one or more feed items to other enterprise
social networks, log call, create an email, create a like, and
create a comment.

20. A database system implementing an enterprise social
network for interacting with database records stored in one or
more databases of the database system using a publisher
component of a user interface configured to present a feed
associated with an entity of the enterprise social network, the
user interface being displayable on a display device of a user,
the publisher component configured to publish information to
one or more feeds of the enterprise social network, the data-
base system configurable to:

receive a request to interact with a child record related to a

parent record stored in a customer relationship manage-
ment (CRM) database of the database system, the
request to interact with the child record having been
generated via the publisher component of the user inter-
face when displayed on a display device;

receive child record information indicating a CRM type of

the child record;

receive data to store in association with the child record in

the CRM database of the database system, the data being
specific to the CRM type of the child record, the data
being differentiated from social media message content
capable of being generated via the publisher component
to publish to one or more feeds of the enterprise social
network accessible by one or more users following the
parent record and/or following the child record in the
enterprise social network, the data having been provided
via atleast one user interactable element of the publisher
component configured to expose at least one field of the
child record particular to the CRM type of the child
record, the at least one user interactable element further
configured to cause data to be provided to the CRM
database for updating the at least one field of the child
record; and

25

30

40

45

50

56

cause to perform, using the database system, the requested
interaction with the child record using the child record
information.

21. The database system of claim 20, wherein the request to
interact with the child record is one of: a request to create the
child record, a request to update the child record, a request to
delete the child record, a request to attach a file to the child
record, and a request to view information associated with the
child record.

22. The database system of claim 20, wherein at least a
portion of the child record information is generated via the
publisher component.

23. The database system of claim 20, the database system
further configurable to:

send feed data to the display devices of the users following

the entity, the feed data including a feed item to be
presented in the one or more feeds of the enterprise
social network, the feed item including the child record
information and the message content.

24. The database system of claim 20, the parent record
and/or the child record being a CRM object being one of: a
lead, a case, an account, an opportunity, a task and a contact.

25. The database system of claim 20, wherein the type of
the child record indicates that the child record is one of: a lead,
a case, an account, an opportunity, a task and a contact.

26. The database system of claim 20, the database system
further configurable to:

send publisher component data, based on the request to

interact with the child record, to the display device at
which the publisher component is displayed, the pub-
lisher component data providing one or more compo-
nents operable to receive user input indicating at least a
portion of the child record information.

27. A non-transitory computer-readable storage medium
storing instructions executable by a computing device to
cause a method to be performed to interact with database
records using a publisher component of a user interface con-
figured to present a feed associated with an entity of an
enterprise social network implemented using a database sys-
tem, the user interface being displayable on a display device
of a user, the publisher component configured to publish
information to one or more feeds of the enterprise social
network, the method comprising:

receiving a request to interact with a child record related to

a parent record stored in a customer relationship man-
agement (CRM) database of the database system, the
request to interact with the child record having been
generated via the publisher component of the user inter-
face when displayed on a display device;

receiving child record information indicating a CRM type

of the child record;

receiving data to store in association with the child record

in the CRM database of the database system, the data
being specific to the CRM type of the child record, the
data being differentiated from social media message
content capable of being generated via the publisher
component to publish to one or more feeds of the enter-
prise social network accessible by one or more users
following the parent record and/or following the child
record in the enterprise social network, the data having
been provided via at least one user interactable element
of the publisher component configured to expose at least
one field of the child record particular to the CRM type
of the child record, the at least one user interactable
element further configured to cause data to be provided
to the CRM database for updating the at least one field of
the child record; and

US 9,177,007 B2

57

causing to be performed, using the database system, the
requested interaction with the child record using the
child record information.

28. The non-transitory computer-readable storage medium
of claim 27, wherein the request to interact with the child
record is one of: a request to create the child record, a request
to update the child record, a request to delete the child record,
a request to attach a file to the child record, and a request to
view information associated with the child record.

#* #* #* #* #*

5

10

58

